

    
      
          
            
  


The Jupyter Notebook


	Installation [https://jupyter.readthedocs.io/en/latest/install.html]


	Starting the Notebook [https://jupyter.readthedocs.io/en/latest/running.html]





User Documentation


	The Jupyter Notebook

	User interface components

	Notebook Examples

	What to do when things go wrong

	Changelog

	Comms






Configuration


	Configuration Overview

	Config file and command line options

	Running a notebook server

	Security in the Jupyter notebook server

	Security in notebook documents

	Configuring the notebook frontend

	Extending the Notebook






Contributor Documentation


	Contributing to the Jupyter Notebook

	Developer FAQ











            

          

      

      

    

  

    
      
          
            
  


The Jupyter Notebook


Introduction

The notebook extends the console-based approach to interactive computing in
a qualitatively new direction, providing a web-based application suitable for
capturing the whole computation process: developing, documenting, and
executing code, as well as communicating the results.  The Jupyter notebook
combines two components:

A web application: a browser-based tool for interactive authoring of
documents which combine explanatory text, mathematics, computations and their
rich media output.

Notebook documents: a representation of all content visible in the web
application, including inputs and outputs of the computations, explanatory
text, mathematics, images, and rich media representations of objects.


See also

See the installation guide [https://jupyter.readthedocs.io/en/latest/install.html#install] on how to install the
notebook and its dependencies.




Main features of the web application


	In-browser editing for code, with automatic syntax highlighting,
indentation, and tab completion/introspection.


	The ability to execute code from the browser, with the results of
computations attached to the code which generated them.


	Displaying the result of computation using rich media representations, such
as HTML, LaTeX, PNG, SVG, etc. For example, publication-quality figures
rendered by the matplotlib [https://matplotlib.org] library, can be included inline.


	In-browser editing for rich text using the Markdown [https://daringfireball.net/projects/markdown/syntax] markup language, which
can provide commentary for the code, is not limited to plain text.


	The ability to easily include mathematical notation within markdown cells
using LaTeX, and rendered natively by MathJax [https://www.mathjax.org/].






Notebook documents

Notebook documents contains the inputs and outputs of a interactive session as
well as additional text that accompanies the code but is not meant for
execution.  In this way, notebook files can serve as a complete computational
record of a session, interleaving executable code with explanatory text,
mathematics, and rich representations of resulting objects. These documents
are internally JSON [https://en.wikipedia.org/wiki/JSON] files and are saved with the .ipynb extension. Since
JSON is a plain text format, they can be version-controlled and shared with
colleagues.

Notebooks may be exported to a range of static formats, including HTML (for
example, for blog posts), reStructuredText, LaTeX, PDF, and slide shows, via
the nbconvert [https://nbconvert.readthedocs.io/en/latest/] command.

Furthermore, any  .ipynb notebook document available from a public
URL can be shared via the Jupyter Notebook Viewer <nbviewer>.
This service loads the notebook document from the URL and renders it as a
static web page.  The results may thus be shared with a colleague, or as a
public blog post, without other users needing to install the Jupyter notebook
themselves.  In effect, nbviewer is simply nbconvert [https://nbconvert.readthedocs.io/en/latest/] as
a web service, so you can do your own static conversions with nbconvert,
without relying on nbviewer.


See also

Details on the notebook JSON file format [https://nbformat.readthedocs.io/en/latest/format_description.html#notebook-file-format]





Notebooks and privacy

Because you use Jupyter in a web browser, some people are understandably
concerned about using it with sensitive data.
However, if you followed the standard
install instructions [https://jupyter.readthedocs.io/en/latest/install.html],
Jupyter is actually running on your own computer.
If the URL in the address bar starts with http://localhost: or
http://127.0.0.1:, it’s your computer acting as the server.
Jupyter doesn’t send your data anywhere else—and as it’s open source,
other people can check that we’re being honest about this.

You can also use Jupyter remotely:
your company or university might run the server for you, for instance.
If you want to work with sensitive data in those cases,
talk to your IT or data protection staff about it.

We aim to ensure that other pages in your browser or other users on the same
computer can’t access your notebook server. See Security in the Jupyter notebook server for
more about this.




Starting the notebook server

You can start running a notebook server from the command line using the
following command:

jupyter notebook





This will print some information about the notebook server in your console,
and open a web browser to the URL of the web application (by default,
http://127.0.0.1:8888).

The landing page of the Jupyter notebook web application, the dashboard,
shows the notebooks currently available in the notebook directory (by default,
the directory from which the notebook server was started).

You can create new notebooks from the dashboard with the New Notebook
button, or open existing ones by clicking on their name.  You can also drag
and drop .ipynb notebooks and standard .py Python source code files
into the notebook list area.

When starting a notebook server from the command line, you can also open a
particular notebook directly, bypassing the dashboard, with jupyter notebook
my_notebook.ipynb. The .ipynb extension is assumed if no extension is
given.

When you are inside an open notebook, the File | Open… menu option will
open the dashboard in a new browser tab, to allow you to open another notebook
from the notebook directory or to create a new notebook.


Note

You can start more than one notebook server at the same time, if you want
to work on notebooks in different directories.  By default the first
notebook server starts on port 8888, and later notebook servers search for
ports near that one.  You can also manually specify the port with the
--port option.




Creating a new notebook document

A new notebook may be created at any time, either from the dashboard, or using
the File ‣ New menu option from within an active notebook.
The new notebook is created within the same directory and will open in a new
browser tab. It will also be reflected as a new entry in the notebook list on
the dashboard.

[image: _images/new-notebook.gif]


Opening notebooks

An open notebook has exactly one interactive session connected to a
kernel, which will execute code sent by the user
and communicate back results.  This kernel remains active if the web browser
window is closed, and reopening the same notebook from the dashboard will
reconnect the web application to the same kernel. In the dashboard, notebooks
with an active kernel have a Shutdown button next to them, whereas
notebooks without an active kernel have a Delete button in its place.

Other clients may connect to the same kernel.
When each kernel is started, the notebook server prints to the terminal a
message like this:

[NotebookApp] Kernel started: 87f7d2c0-13e3-43df-8bb8-1bd37aaf3373





This long string is the kernel’s ID which is sufficient for getting the
information necessary to connect to the kernel. If the notebook uses the IPython
kernel, you can also see this
connection data by running the %connect_info magic [https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magics-explained], which will print the same ID information along with other
details.

You can then, for example, manually start a Qt console connected to the same
kernel from the command line, by passing a portion of the ID:

$ jupyter qtconsole --existing 87f7d2c0





Without an ID, --existing will  connect to the most recently
started kernel.

With the IPython kernel, you can also run the %qtconsole
magic [https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magics-explained] in the notebook to open a Qt console connected
to the same kernel.


See also

Decoupled two-process model [https://ipython.readthedocs.io/en/stable/overview.html#ipythonzmq]






Notebook user interface

When you create a new notebook document, you will be presented with the
notebook name, a menu bar, a toolbar and an empty code cell.

[image: _images/blank-notebook-ui.png]
Notebook name: The name displayed at the top of the page,
next to the Jupyter logo, reflects the name of the .ipynb file.
Clicking on the notebook name brings up a dialog which allows you to rename it.
Thus, renaming a notebook
from “Untitled0” to “My first notebook” in the browser, renames the
Untitled0.ipynb file to My first notebook.ipynb.

Menu bar: The menu bar presents different options that may be used to
manipulate the way the notebook functions.

Toolbar: The tool bar gives a quick way of performing the most-used
operations within the notebook, by clicking on an icon.

Code cell: the default type of cell; read on for an explanation of cells.



Structure of a notebook document

The notebook consists of a sequence of cells.  A cell is a multiline text input
field, and its contents can be executed by using Shift-Enter, or by
clicking either the “Play” button the toolbar, or Cell, Run in the menu bar.
The execution behavior of a cell is determined by the cell’s type.  There are three
types of cells: code cells, markdown cells, and raw cells.  Every
cell starts off being a code cell, but its type can be changed by using a
drop-down on the toolbar (which will be “Code”, initially), or via
keyboard shortcuts.

For more information on the different things you can do in a notebook,
see the collection of examples [https://nbviewer.jupyter.org/github/jupyter/notebook/tree/master/docs/source/examples/Notebook/].


Code cells

A code cell allows you to edit and write new code, with full syntax
highlighting and tab completion. The programming language you use depends
on the kernel, and the default kernel (IPython) runs Python code.

When a code cell is executed, code that it contains is sent to the kernel
associated with the notebook.  The results that are returned from this
computation  are then displayed in the notebook as the cell’s output. The
output is not limited to text, with many other possible forms of output are
also possible, including matplotlib figures and HTML tables (as used, for
example, in the pandas data analysis package). This is known as IPython’s
rich display capability.


See also

Rich Output [https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Rich%20Output.ipynb]  example notebook





Markdown cells

You can document the computational process in a literate way, alternating
descriptive text with code, using rich text. In IPython this is accomplished
by marking up text with the Markdown language. The corresponding cells are
called Markdown cells. The Markdown language provides a simple way to
perform this text markup, that is, to specify which parts of the text should
be emphasized (italics), bold, form lists, etc.

If you want to provide structure for your document, you can use markdown
headings. Markdown headings consist of 1 to 6 hash # signs # followed by a
space and the title of your section. The markdown heading will be converted
to a clickable link for a section of the notebook. It is also used as a hint
when exporting to other document formats, like PDF.

When a Markdown cell is executed, the Markdown code is converted into
the corresponding formatted rich text. Markdown allows arbitrary HTML code for
formatting.

Within Markdown cells, you can also include mathematics in a straightforward
way, using standard LaTeX notation: $...$ for inline mathematics and
$$...$$ for displayed mathematics. When the Markdown cell is executed,
the LaTeX portions are automatically rendered in the HTML output as equations
with high quality typography. This is made possible by MathJax [https://www.mathjax.org/], which
supports a large subset [https://docs.mathjax.org/en/latest/input/tex/index.html] of LaTeX functionality

Standard mathematics environments defined by LaTeX and AMS-LaTeX (the
amsmath package) also work, such as
\begin{equation}...\end{equation}, and \begin{align}...\end{align}.
New LaTeX macros may be defined using standard methods,
such as \newcommand, by placing them anywhere between math delimiters in
a Markdown cell. These definitions are then available throughout the rest of
the IPython session.


See also

Working with Markdown Cells [https://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Working%20With%20Markdown%20Cells.ipynb] example notebook





Raw cells

Raw cells provide a place in which you can write output directly.
Raw cells are not evaluated by the notebook.
When passed through nbconvert [https://nbconvert.readthedocs.io/en/latest/], raw cells arrive in the
destination format unmodified. For example, you can type full LaTeX
into a raw cell, which will only be rendered by LaTeX after conversion by
nbconvert.




Basic workflow

The normal workflow in a notebook is, then, quite similar to a standard
IPython session, with the difference that you can edit cells in-place multiple
times until you obtain the desired results, rather than having to
rerun separate scripts with the %run magic command.

Typically, you will work on a computational problem in pieces, organizing
related ideas into cells and moving forward once previous parts work
correctly. This is much more convenient for interactive exploration than
breaking up a computation into scripts that must be executed together, as was
previously necessary, especially if parts of them take a long time to run.

To interrupt a calculation which is taking too long, use the Kernel,
Interrupt menu option, or the i,i keyboard shortcut.
Similarly, to restart the whole computational process,
use the Kernel, Restart menu option or 0,0
shortcut.

A notebook may be downloaded as a .ipynb file or converted to a number of
other formats using the menu option File, Download as.


See also

Running Code in the Jupyter Notebook [https://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Running%20Code.ipynb] example notebook

Notebook Basics [https://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Notebook%20Basics.ipynb] example notebook




Keyboard shortcuts

All actions in the notebook can be performed with the mouse, but keyboard
shortcuts are also available for the most common ones. The essential shortcuts
to remember are the following:


	
	Shift-Enter:  run cell
	Execute the current cell, show any output, and jump to the next cell below.
If Shift-Enter is invoked on the last cell, it makes a new cell below.
This is equivalent to clicking the Cell, Run menu
item, or the Play button in the toolbar.







	
	Esc: Command mode
	In command mode, you can navigate around the notebook using keyboard shortcuts.







	
	Enter: Edit mode
	In edit mode, you can edit text in cells.









For the full list of available shortcuts, click Help,
Keyboard Shortcuts in the notebook menus.




Plotting

One major feature of the Jupyter notebook is the ability to display plots that
are the output of running code cells. The IPython kernel is designed to work
seamlessly with the matplotlib [https://matplotlib.org] plotting library to provide this functionality.
Specific plotting library integration is a feature of the kernel.



Installing kernels

For information on how to install a Python kernel, refer to the
IPython install page [https://ipython.org/install.html].

The Jupyter wiki has a long list of Kernels for other languages [https://github.com/jupyter/jupyter/wiki/Jupyter-kernels].
They usually come with instructions on how to make the kernel available
in the notebook.



Trusting Notebooks

To prevent untrusted code from executing on users’ behalf when notebooks open,
we store a signature of each trusted notebook.
The notebook server verifies this signature when a notebook is opened.
If no matching signature is found,
Javascript and HTML output will not be displayed
until they are regenerated by re-executing the cells.

Any notebook that you have fully executed yourself will be
considered trusted, and its HTML and Javascript output will be displayed on
load.

If you need to see HTML or Javascript output without re-executing,
and you are sure the notebook is not malicious, you can tell Jupyter to trust it
at the command-line with:

$ jupyter trust mynotebook.ipynb





See Security in notebook documents for more details about the trust mechanism.



Browser Compatibility

The Jupyter Notebook aims to support the latest versions of these browsers:


	Chrome


	Safari


	Firefox




Up to date versions of Opera and Edge may also work, but if they don’t, please
use one of the supported browsers.

Using Safari with HTTPS and an untrusted certificate is known to not work
(websockets will fail).





            

          

      

      

    

  

    
      
          
            
  


User interface components

When opening bug reports or sending emails to the Jupyter mailing list, it is
useful to know the names of different UI components so that other developers
and users have an easier time helping you diagnose your problems. This section
will familiarize you with the names of UI elements within the Notebook and the
different Notebook modes.


Notebook Dashboard

When you launch jupyter notebook the first page that you encounter is the
Notebook Dashboard.

[image: _images/jupyter-notebook-dashboard.png]


Notebook Editor

Once you’ve selected a Notebook to edit, the Notebook will open in the Notebook
Editor.

[image: _images/jupyter-notebook-default.png]


Interactive User Interface Tour of the Notebook

If you would like to learn more about the specific elements within the Notebook
Editor, you can go through the user interface tour by selecting Help in the
menubar then selecting User Interface Tour.


Edit Mode and Notebook Editor

When a cell is in edit mode, the Cell Mode Indicator will change to reflect
the cell’s state. This state is indicated by a small pencil icon on the
top right of the interface. When the cell is in command mode, there is no
icon in that location.

[image: _images/jupyter-notebook-edit.png]



File Editor

Now let’s say that you’ve chosen to open a Markdown file instead of a Notebook
file whilst in the Notebook Dashboard. If so, the file will be opened in the
File Editor.

[image: _images/jupyter-file-editor.png]




            

          

      

      

    

  

    
      
          
            
  


Notebook Examples

The pages in this section are all converted notebook files. You can also
view these notebooks on nbviewer [https://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/].







            

          

      

      

    

  

    
      
          
            
  


What to do when things go wrong

First, have a look at the common problems listed below. If you can figure it out
from these notes, it will be quicker than asking for help.

Check that you have the latest version of any packages that look relevant.
Unfortunately it’s not always easy to figure out what packages are relevant,
but if there was a bug that’s already been fixed,
it’s easy to upgrade and get on with what you wanted to do.


Jupyter fails to start


	Have you installed it [https://jupyter.org/install.html]? ;-)


	If you’re using a menu shortcut or Anaconda launcher to start it, try
opening a terminal or command prompt and running the command jupyter notebook.


	If it can’t find jupyter,
you may need to configure your PATH environment variable.
If you don’t know what that means, and don’t want to find out,
just (re)install Anaconda with the default settings,
and it should set up PATH correctly.


	If Jupyter gives an error that it can’t find notebook,
check with pip or conda that the notebook package is installed.


	Try running jupyter-notebook (with a hyphen). This should normally be the
same as jupyter notebook (with a space), but if there’s any difference,
the version with the hyphen is the ‘real’ launcher, and the other one wraps
that.






Jupyter doesn’t load or doesn’t work in the browser


	Try in another browser (e.g. if you normally use Firefox, try with Chrome).
This helps pin down where the problem is.


	Try disabling any browser extensions and/or any Jupyter extensions you have
installed.


	Some internet security software can interfere with Jupyter.
If you have security software, try turning it off temporarily,
and look in the settings for a more long-term solution.


	In the address bar, try changing between localhost and 127.0.0.1.
They should be the same, but in some cases it makes a difference.






Jupyter can’t start a kernel

Files called kernel specs tell Jupyter how to start different kinds of kernels.
To see where these are on your system, run jupyter kernelspec list:

$ jupyter kernelspec list
Available kernels:
  python3      /home/takluyver/.local/lib/python3.6/site-packages/ipykernel/resources
  bash         /home/takluyver/.local/share/jupyter/kernels/bash
  ir           /home/takluyver/.local/share/jupyter/kernels/ir





There’s a special fallback for the Python kernel:
if it doesn’t find a real kernelspec, but it can import the ipykernel package,
it provides a kernel which will run in the same Python environment as the notebook server.
A path ending in ipykernel/resources, like in the example above,
is this default kernel.
The default often does what you want,
so if the python3 kernelspec points somewhere else
and you can’t start a Python kernel,
try deleting or renaming that kernelspec folder to expose the default.

If your problem is with another kernel, not the Python one we maintain,
you may need to look for support about that kernel.



Python Environments

Multiple python environments, whether based on Anaconda or Python Virtual environments,
are often the source of reported issues.  In many cases, these issues stem from the
Notebook server running in one environment, while the kernel and/or its resources,
derive from another environment.  Indicators of this scenario include:


	import statements within code cells producing ImportError or ModuleNotFound exceptions.


	General kernel startup failures exhibited by nothing happening when attempting
to execute a cell.




In these situations, take a close look at your environment structure and ensure all
packages required by your notebook’s code are installed in the correct environment.
If you need to run the kernel from different environments than your Notebook
server, check out IPython’s documentation [https://ipython.readthedocs.io/en/stable/install/kernel_install.html#kernels-for-different-environments]
for using kernels from different environments as this is the recommended approach.
Anaconda’s nb_conda_kernels [https://github.com/Anaconda-Platform/nb_conda_kernels]
package might also be an option for you in these scenarios.

Another thing to check is the kernel.json file that will be located in the
aforementioned kernel specs directory identified by running jupyter kernelspec list.
This file will contain an argv stanza that includes the actual command to run
when launching the kernel.  Oftentimes, when reinstalling python environments, a previous
kernel.json will reference an python executable from an old or non-existent location.
As a result, it’s always a good idea when encountering kernel startup issues to validate
the argv stanza to ensure all file references exist and are appropriate.



Windows Systems

Although Jupyter Notebook is primarily developed on the various flavors of the Unix
operating system it also supports Microsoft
Windows - which introduces its own set of commonly encountered issues,
particularly in the areas of security, process management and lower-level libraries.


pywin32 Issues

The primary package for interacting with Windows’ primitives is pywin32.


	Issues surrounding the creation of the kernel’s communication file utilize
jupyter_core’s secure_write() function.  This function ensures a file is
created in which only the owner of the file has access.  If libraries like pywin32
are not properly installed, issues can arise when it’s necessary to use the native
Windows libraries.

Here’s a portion of such a traceback:

File "c:\users\jovyan\python\myenv.venv\lib\site-packages\jupyter_core\paths.py", line 424, in secure_write
win32_restrict_file_to_user(fname)
File "c:\users\jovyan\python\myenv.venv\lib\site-packages\jupyter_core\paths.py", line 359, in win32_restrict_file_to_user
import win32api
ImportError: DLL load failed: The specified module could not be found.







	As noted earlier, the installation of pywin32 can be problematic on Windows
configurations.  When such an issue occurs, you may need to revisit how the environment
was setup.  Pay careful attention to whether you’re running the 32 or 64 bit versions
of Windows and be sure to install appropriate packages for that environment.

Here’s a portion of such a traceback:

File "C:\Users\jovyan\AppData\Roaming\Python\Python37\site-packages\jupyter_core\paths.py", line 435, in secure_write
win32_restrict_file_to_user(fname)
File "C:\Users\jovyan\AppData\Roaming\Python\Python37\site-packages\jupyter_core\paths.py", line 361, in win32_restrict_file_to_user
import win32api
ImportError: DLL load failed: %1 is not a valid Win32 application










Resolving pywin32 Issues


In this case, your pywin32 module may not be installed correctly and the following
should be attempted:

pip install --upgrade pywin32





or:

conda install --force-reinstall pywin32





followed by:

python.exe Scripts/pywin32_postinstall.py -install





where Scripts is located in the active Python’s installation location.





	Another common failure specific to Windows environments is the location of various
python commands.  On *nix systems, these typically reside in the bin directory
of the active Python environment.  However, on Windows, these tend to reside in the
Scripts folder - which is a sibling to bin.  As a result, when encountering
kernel startup issues, again, check the argv stanza and verify it’s pointing to a
valid file.  You may find that it’s pointing in bin when Scripts is correct, or
the referenced file does not include its .exe extension - typically resulting in
FileNotFoundError exceptions.








This Worked An Hour Ago

The Jupyter stack is very complex and rightfully so, there’s a lot going on.  On occassion
you might find the system working perfectly well, then, suddenly, you can’t get past a
certain cell due to import failures.  In these situations, it’s best to ask yourself
if any new python files were added to your notebook development area.

These issues are usually evident by carefully analyzing the traceback produced in
the notebook error or the Notebook server’s command window.  In these cases, you’ll typically
find the Python kernel code (from IPython and ipykernel) performing its imports
and notice a file from your Notebook development error included in that traceback followed
by an AttributeError:

File "C:\Users\jovyan\anaconda3\lib\site-packages\ipykernel\connect.py", line 13, in
from IPython.core.profiledir import ProfileDir
File "C:\Users\jovyan\anaconda3\lib\site-packages\IPython_init.py", line 55, in
from .core.application import Application
...
File "C:\Users\jovyan\anaconda3\lib\site-packages\ipython_genutils\path.py", line 13, in
import random
File "C:\Users\jovyan\Desktop\Notebooks\random.py", line 4, in
rand_set = random.sample(english_words_lower_set, 12)
AttributeError: module 'random' has no attribute 'sample'





What has happened is that you have named a file that conflicts with an installed package
that is used by the kernel software and now introduces a conflict preventing the
kernel’s startup.

Resolution: You’ll need to rename your file.  A best practice would be to prefix or
namespace your files so as not to conflict with any python package.



Asking for help

As with any problem, try searching to see if someone has already found an answer.
If you can’t find an existing answer, you can ask questions at:


	The Jupyter Discourse Forum [https://discourse.jupyter.org/]


	The jupyter-notebook tag on Stackoverflow [https://stackoverflow.com/questions/tagged/jupyter-notebook]


	Peruse the jupyter/help repository on Github [https://github.com/jupyter/help] (read-only)


	Or in an issue on another repository, if it’s clear which component is
responsible.  Typical repositories include:



	jupyter_core [https://github.com/jupyter/jupyter_core] - secure_write()
and file path issues


	jupyter_client [https://github.com/jupyter/jupyter_core] - kernel management
issues found in Notebook server’s command window.


	IPython [https://github.com/ipython/ipython] and
ipykernel [https://github.com/ipython/ipykernel] - kernel runtime issues
typically found in Notebook server’s command window and/or Notebook cell execution.












Gathering Information

Should you find that your problem warrants that an issue be opened in
notebook [https://github.com/jupyter/notebook] please don’t forget to provide details
like the following:


	What error messages do you see (within your notebook and, more importantly, in
the Notebook server’s command window)?


	What platform are you on?


	How did you install Jupyter?


	What have you tried already?




The jupyter troubleshoot command collects a lot of information
about your installation, which can also be useful.

When providing textual information, it’s most helpful if you can scrape the contents
into the issue rather than providing a screenshot.  This enables others to select
pieces of that content so they can search more efficiently and try to help.

Remember that it’s not anyone’s job to help you.
We want Jupyter to work for you,
but we can’t always help everyone individually.






            

          

      

      

    

  

    
      
          
            
  


Changelog

A summary of changes in the Jupyter notebook. For more detailed
information, see GitHub [https://github.com/jupyter/notebook].

Use pip install notebook --upgrade or conda upgrade notebook to
upgrade to the latest release.

We strongly recommend that you upgrade pip to version 9+ of pip before
upgrading notebook.

Use pip install pip --upgrade to upgrade pip. Check pip version with
pip --version.



6.4.4

(Full Changelog [https://github.com/jupyter/notebook/compare/v6.4.3...c06c340574e1d2207940c5bd1190eb73d82ab945])


Documentation improvements


	Update Manual Release Instructions #6152 [https://github.com/jupyter/notebook/pull/6152] (@blink1073 [https://github.com/blink1073])






Other merged PRs


	Use default JupyterLab CSS sanitizer options for Markdown #6160 [https://github.com/jupyter/notebook/pull/6160] (@krassowski [https://github.com/krassowski])


	Fix syntax highlight #6128 [https://github.com/jupyter/notebook/pull/6128] (@massongit [https://github.com/massongit])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/notebook/graphs/contributors?from=2021-08-11&to=2021-09-03&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ablink1073+updated%3A2021-08-11..2021-09-03&type=Issues] | @kevin-bates [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Akevin-bates+updated%3A2021-08-11..2021-09-03&type=Issues] | @krassowski [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Akrassowski+updated%3A2021-08-11..2021-09-03&type=Issues] | @massongit [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Amassongit+updated%3A2021-08-11..2021-09-03&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aminrk+updated%3A2021-08-11..2021-09-03&type=Issues] | @Zsailer [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AZsailer+updated%3A2021-08-11..2021-09-03&type=Issues]





6.4.3

(Full Changelog [https://github.com/jupyter/notebook/compare/v6.4.2...c373bd89adaaddffbb71747ebbcfe8a749cae0a8])


Bugs fixed


	Add @babel/core dependency #6133 [https://github.com/jupyter/notebook/pull/6133] (@afshin [https://github.com/afshin])


	Switch webpack to production mode #6131 [https://github.com/jupyter/notebook/pull/6131] (@afshin [https://github.com/afshin])






Maintenance and upkeep improvements


	Clean up link checking #6130 [https://github.com/jupyter/notebook/pull/6130] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/notebook/graphs/contributors?from=2021-08-06&to=2021-08-10&type=c])

@afshin [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aafshin+updated%3A2021-08-06..2021-08-10&type=Issues] | @blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ablink1073+updated%3A2021-08-06..2021-08-10&type=Issues] | @Zsailer [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AZsailer+updated%3A2021-08-06..2021-08-10&type=Issues]




6.4.2

(Full Changelog [https://github.com/jupyter/notebook/compare/v6.4.0...999e8322bcd24e0ed62b180c19ec13db3f48165b])


Bugs fixed


	Add missing file to manifest #6122 [https://github.com/jupyter/notebook/pull/6122] (@afshin [https://github.com/afshin])


	Fix issue #3218 #6108 [https://github.com/jupyter/notebook/pull/6108] (@Nazeeh21 [https://github.com/Nazeeh21])


	Fix version of jupyter-packaging in pyproject.toml #6101 [https://github.com/jupyter/notebook/pull/6101] (@frenzymadness [https://github.com/frenzymadness])


	“#element”.tooltip is not a function on home page fixed. #6070 [https://github.com/jupyter/notebook/pull/6070] (@ilayh123 [https://github.com/ilayh123])






Maintenance and upkeep improvements


	Enhancements to the desktop entry #6099 [https://github.com/jupyter/notebook/pull/6099] (@Amr-Ibra [https://github.com/Amr-Ibra])


	Add missing spaces to help messages in config file #6085 [https://github.com/jupyter/notebook/pull/6085] (@saiwing-yeung [https://github.com/saiwing-yeung])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/notebook/graphs/contributors?from=2021-05-17&to=2021-08-06&type=c])

@afshin [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aafshin+updated%3A2021-05-17..2021-08-06&type=Issues] | @Amr-Ibra [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AAmr-Ibra+updated%3A2021-05-17..2021-08-06&type=Issues] | @frenzymadness [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Afrenzymadness+updated%3A2021-05-17..2021-08-06&type=Issues] | @ilayh123 [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ailayh123+updated%3A2021-05-17..2021-08-06&type=Issues] | @kevin-bates [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Akevin-bates+updated%3A2021-05-17..2021-08-06&type=Issues] | @Nazeeh21 [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3ANazeeh21+updated%3A2021-05-17..2021-08-06&type=Issues] | @saiwing-yeung [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Asaiwing-yeung+updated%3A2021-05-17..2021-08-06&type=Issues]




6.4.0

(Full Changelog [https://github.com/jupyter/notebook/compare/6.3.0...80eb286f316838afc76a9a84b06f54e7dccb6c86])


Bugs fixed


	Fix Handling of Encoded Paths in Save As Dialog #6030 [https://github.com/jupyter/notebook/pull/6030] (@afshin [https://github.com/afshin])


	Fix: split_cell doesn’t always split cell #6017 [https://github.com/jupyter/notebook/pull/6017] (@gamestrRUS [https://github.com/gamestrRUS])


	Correct ‘Content-Type’ headers #6026 [https://github.com/jupyter/notebook/pull/6026] (@faucct [https://github.com/faucct])


	Fix skipped tests & remove deprecation warnings #6018 [https://github.com/jupyter/notebook/pull/6018] (@befeleme [https://github.com/befeleme])


	[Gateway] Track only this server’s kernels #5980 [https://github.com/jupyter/notebook/pull/5980] (@kevin-bates [https://github.com/kevin-bates])


	Bind the HTTPServer in start #6061 [https://github.com/jupyter/notebook/pull/6061]






Maintenance and upkeep improvements


	Revert “do not apply asyncio patch for tornado >=6.1” #6052 [https://github.com/jupyter/notebook/pull/6052] (@minrk [https://github.com/minrk])


	Use Jupyter Releaser #6048 [https://github.com/jupyter/notebook/pull/6048] (@afshin [https://github.com/afshin])


	Add Workflow Permissions for Lock Bot #6042 [https://github.com/jupyter/notebook/pull/6042] (@jtpio [https://github.com/jtpio])


	Fixes related to the recent changes in the documentation #6021 [https://github.com/jupyter/notebook/pull/6021] (@frenzymadness [https://github.com/frenzymadness])


	Add maths checks in CSS reference test #6035 [https://github.com/jupyter/notebook/pull/6035] (@stef4k [https://github.com/stef4k])


	Add Issue Lock and Answered Bots #6019 [https://github.com/jupyter/notebook/pull/6019] (@afshin [https://github.com/afshin])






Documentation improvements


	Spelling correction #6045 [https://github.com/jupyter/notebook/pull/6045] (@wggillen [https://github.com/wggillen])


	Minor typographical and comment changes #6025 [https://github.com/jupyter/notebook/pull/6025] (@misterhay [https://github.com/misterhay])


	Fixes related to the recent changes in the documentation #6021 [https://github.com/jupyter/notebook/pull/6021] (@frenzymadness [https://github.com/frenzymadness])


	Fix readthedocs environment #6020 [https://github.com/jupyter/notebook/pull/6020] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/notebook/graphs/contributors?from=2021-03-22&to=2021-05-12&type=c])

@afshin [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aafshin+updated%3A2021-03-22..2021-05-12&type=Issues] | @befeleme [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Abefeleme+updated%3A2021-03-22..2021-05-12&type=Issues] | @blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ablink1073+updated%3A2021-03-22..2021-05-12&type=Issues] | @faucct [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Afaucct+updated%3A2021-03-22..2021-05-12&type=Issues] | @frenzymadness [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Afrenzymadness+updated%3A2021-03-22..2021-05-12&type=Issues] | @gamestrRUS [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AgamestrRUS+updated%3A2021-03-22..2021-05-12&type=Issues] | @jtpio [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ajtpio+updated%3A2021-03-22..2021-05-12&type=Issues] | @kevin-bates [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Akevin-bates+updated%3A2021-03-22..2021-05-12&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aminrk+updated%3A2021-03-22..2021-05-12&type=Issues] | @misterhay [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Amisterhay+updated%3A2021-03-22..2021-05-12&type=Issues] | @stef4k [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Astef4k+updated%3A2021-03-22..2021-05-12&type=Issues] | @wggillen [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Awggillen+updated%3A2021-03-22..2021-05-12&type=Issues]




6.3.0


Merged PRs


	Add square logo and desktop entry files #6010 [https://github.com/jupyter/notebook/pull/6010] (@befeleme [https://github.com/befeleme])


	Modernize Changelog #6008 [https://github.com/jupyter/notebook/pull/6008] (@afshin [https://github.com/afshin])


	Add missing “import inspect” #5999 [https://github.com/jupyter/notebook/pull/5999] (@mgeier [https://github.com/mgeier])


	Add Codecov badge to README #5989 [https://github.com/jupyter/notebook/pull/5989] (@thomasrockhu [https://github.com/thomasrockhu])


	Remove configuration for nosetests from setup.cfg #5986 [https://github.com/jupyter/notebook/pull/5986] (@frenzymadness [https://github.com/frenzymadness])


	Update security.rst #5978 [https://github.com/jupyter/notebook/pull/5978] (@dlrice [https://github.com/dlrice])


	Docs-Translations: Updated Hindi and Chinese Readme.md #5976 [https://github.com/jupyter/notebook/pull/5976] (@rjn01 [https://github.com/rjn01])


	Allow /metrics by default if auth is off #5974 [https://github.com/jupyter/notebook/pull/5974] (@blairdrummond [https://github.com/blairdrummond])


	Skip terminal tests on Windows 3.9+ (temporary) #5968 [https://github.com/jupyter/notebook/pull/5968] (@kevin-bates [https://github.com/kevin-bates])


	Update GatewayKernelManager to derive from AsyncMappingKernelManager #5966 [https://github.com/jupyter/notebook/pull/5966] (@kevin-bates [https://github.com/kevin-bates])


	Drop use of deprecated pyzmq.ioloop #5965 [https://github.com/jupyter/notebook/pull/5965] (@kevin-bates [https://github.com/kevin-bates])


	Drop support for Python 3.5 #5962 [https://github.com/jupyter/notebook/pull/5962] (@kevin-bates [https://github.com/kevin-bates])


	Allow jupyter_server-based contents managers in notebook #5957 [https://github.com/jupyter/notebook/pull/5957] (@afshin [https://github.com/afshin])


	Russian translation fixes #5954 [https://github.com/jupyter/notebook/pull/5954] (@insolor [https://github.com/insolor])


	Increase culling test idle timeout #5952 [https://github.com/jupyter/notebook/pull/5952] (@kevin-bates [https://github.com/kevin-bates])


	Re-enable support for answer_yes flag #5941 [https://github.com/jupyter/notebook/pull/5941] (@afshin [https://github.com/afshin])


	Replace Travis and Appveyor with Github Actions #5938 [https://github.com/jupyter/notebook/pull/5938] (@kevin-bates [https://github.com/kevin-bates])


	DOC: Server extension, extra docs on configuration/authentication. #5937 [https://github.com/jupyter/notebook/pull/5937] (@Carreau [https://github.com/Carreau])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/notebook/graphs/contributors?from=2021-01-13&to=2021-03-18&type=c])

@abielhammonds [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aabielhammonds+updated%3A2021-01-13..2021-03-18&type=Issues] | @afshin [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aafshin+updated%3A2021-01-13..2021-03-18&type=Issues] | @ajharry [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aajharry+updated%3A2021-01-13..2021-03-18&type=Issues] | @Alokrar [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AAlokrar+updated%3A2021-01-13..2021-03-18&type=Issues] | @befeleme [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Abefeleme+updated%3A2021-01-13..2021-03-18&type=Issues] | @blairdrummond [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ablairdrummond+updated%3A2021-01-13..2021-03-18&type=Issues] | @blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ablink1073+updated%3A2021-01-13..2021-03-18&type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Abollwyvl+updated%3A2021-01-13..2021-03-18&type=Issues] | @Carreau [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3ACarreau+updated%3A2021-01-13..2021-03-18&type=Issues] | @ChenChenDS [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AChenChenDS+updated%3A2021-01-13..2021-03-18&type=Issues] | @cosmoscalibur [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Acosmoscalibur+updated%3A2021-01-13..2021-03-18&type=Issues] | @dlrice [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Adlrice+updated%3A2021-01-13..2021-03-18&type=Issues] | @dwanneruchi [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Adwanneruchi+updated%3A2021-01-13..2021-03-18&type=Issues] | @ElisonSherton [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AElisonSherton+updated%3A2021-01-13..2021-03-18&type=Issues] | @FazeelUsmani [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AFazeelUsmani+updated%3A2021-01-13..2021-03-18&type=Issues] | @frenzymadness [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Afrenzymadness+updated%3A2021-01-13..2021-03-18&type=Issues] | @goerz [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Agoerz+updated%3A2021-01-13..2021-03-18&type=Issues] | @insolor [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ainsolor+updated%3A2021-01-13..2021-03-18&type=Issues] | @jasongrout [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ajasongrout+updated%3A2021-01-13..2021-03-18&type=Issues] | @JianghuiDu [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AJianghuiDu+updated%3A2021-01-13..2021-03-18&type=Issues] | @JuzerShakir [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AJuzerShakir+updated%3A2021-01-13..2021-03-18&type=Issues] | @kevin-bates [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Akevin-bates+updated%3A2021-01-13..2021-03-18&type=Issues] | @Khalilsqu [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AKhalilsqu+updated%3A2021-01-13..2021-03-18&type=Issues] | @meeseeksdev [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ameeseeksdev+updated%3A2021-01-13..2021-03-18&type=Issues] | @mgeier [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Amgeier+updated%3A2021-01-13..2021-03-18&type=Issues] | @michaelpedota [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Amichaelpedota+updated%3A2021-01-13..2021-03-18&type=Issues] | @mjbright [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Amjbright+updated%3A2021-01-13..2021-03-18&type=Issues] | @MSeal [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AMSeal+updated%3A2021-01-13..2021-03-18&type=Issues] | @ncoughlin [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ancoughlin+updated%3A2021-01-13..2021-03-18&type=Issues] | @NTimmons [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3ANTimmons+updated%3A2021-01-13..2021-03-18&type=Issues] | @ProsperousHeart [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AProsperousHeart+updated%3A2021-01-13..2021-03-18&type=Issues] | @rjn01 [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Arjn01+updated%3A2021-01-13..2021-03-18&type=Issues] | @slw07g [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Aslw07g+updated%3A2021-01-13..2021-03-18&type=Issues] | @stenivan [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Astenivan+updated%3A2021-01-13..2021-03-18&type=Issues] | @takluyver [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Atakluyver+updated%3A2021-01-13..2021-03-18&type=Issues] | @thomasrockhu [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Athomasrockhu+updated%3A2021-01-13..2021-03-18&type=Issues] | @wgilpin [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Awgilpin+updated%3A2021-01-13..2021-03-18&type=Issues] | @wxtt522 [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Awxtt522+updated%3A2021-01-13..2021-03-18&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3Ayuvipanda+updated%3A2021-01-13..2021-03-18&type=Issues] | @Zsailer [https://github.com/search?q=repo%3Ajupyter%2Fnotebook+involves%3AZsailer+updated%3A2021-01-13..2021-03-18&type=Issues]




6.2.0



Merged PRs


	Increase minimum tornado version (5933 [https://github.com/jupyter/notebook/pull/5933])


	Adjust skip decorators to avoid remaining dependency on nose (5932 [https://github.com/jupyter/notebook/pull/5932])


	Ensure that cell ids persist after save (5928 [https://github.com/jupyter/notebook/pull/5928])


	Add reconnection to Gateway (form nb2kg) (5924 [https://github.com/jupyter/notebook/pull/5924])


	Fix some typos (5917 [https://github.com/jupyter/notebook/pull/5917])


	Handle TrashPermissionError, now that it exist (5894 [https://github.com/jupyter/notebook/pull/5894])




Thank you to all the contributors:


	@kevin-bates


	@mishaschwartz


	@oyvsyo


	@user202729


	@stefanor






6.1.6



Merged PRs


	do not require nose for testing (5826 [https://github.com/jupyter/notebook/pull/5826])


	[docs] Update Chinese and Hindi readme.md (5823 [https://github.com/jupyter/notebook/pull/5823])


	Add support for creating terminals via GET (5813 [https://github.com/jupyter/notebook/pull/5813])


	Made doc translations in Hindi and Chinese (5787 [https://github.com/jupyter/notebook/pull/5787])




Thank you to all the contributors:


	@pgajdos


	@rjn01


	@kevin-bates


	@virejdasani






6.1.5

6.1.5 is a security release, fixing one vulnerability:


	Fix open redirect vulnerability GHSA-c7vm-f5p4-8fqh (CVE to be assigned)






6.1.4


	Fix broken links to jupyter documentation (5686 [https://github.com/jupyter/notebook/pull/5686])


	Add additional entries to troubleshooting section (5695 [https://github.com/jupyter/notebook/pull/5695])


	Revert change in page alignment (5703 [https://github.com/jupyter/notebook/pull/5703])


	Bug fix: remove double encoding in download files (5720 [https://github.com/jupyter/notebook/pull/5720])


	Fix typo for Check in zh_CN (5730 [https://github.com/jupyter/notebook/pull/5730])


	Require a file name in the “Save As” dialog (5733 [https://github.com/jupyter/notebook/pull/5733])




Thank you to all the contributors:


	bdbai


	Jaipreet Singh


	Kevin Bates


	Pavel Panchekha


	Zach Sailer






6.1.3


	Title new buttons with label if action undefined (5676 [https://github.com/jupyter/notebook/pull/5676])




Thank you to all the contributors:


	Kyle Kelley






6.1.2


	Fix russian message format for delete/duplicate actions (5662 [https://github.com/jupyter/notebook/pull/5662])


	Remove unnecessary import of bind_unix_socket (5666 [https://github.com/jupyter/notebook/pull/5666])


	Tooltip style scope fix (5672 [https://github.com/jupyter/notebook/pull/5672])




Thank you to all the contributors:


	Dmitry Akatov


	Kevin Bates


	Magda Stenius






6.1.1


	Prevent inclusion of requests_unixsocket on Windows (5650 [https://github.com/jupyter/notebook/pull/5650])




Thank you to all the contributors:


	Kevin Bates






6.1.0

Please note that this repository is currently maintained by a skeleton
crew of maintainers from the Jupyter community. For our approach moving
forward, please see this
notice [https://github.com/jupyter/notebook#notice] from the README.
Thank you.

Here is an enumeration of changes made since the last release and
included in 6.1.0.


	Remove deprecated encoding parameter for Python 3.9 compatibility. (5174 [https://github.com/jupyter/notebook/pull/5174])


	Add support for async kernel management (4479 [https://github.com/jupyter/notebook/pull/4479])


	Fix typo in password_required help message (5320 [https://github.com/jupyter/notebook/pull/5320])


	Gateway only: Ensure launch and request timeouts are in sync (5317 [https://github.com/jupyter/notebook/pull/5317])


	Update Markdown Cells example to HTML5 video tag (5411 [https://github.com/jupyter/notebook/pull/5411])


	Integrated LoginWidget into edit to enable users to logout from the t… (5406 [https://github.com/jupyter/notebook/pull/5406])


	Update message about minimum Tornado version (5222 [https://github.com/jupyter/notebook/pull/5222])


	Logged notebook type (5425 [https://github.com/jupyter/notebook/pull/5425])


	Added nl language (5354 [https://github.com/jupyter/notebook/pull/5354])


	Add UNIX socket support to notebook server. (4835 [https://github.com/jupyter/notebook/pull/4835])


	Update CodeMirror dependency (5198 [https://github.com/jupyter/notebook/pull/5198])


	Tree added download multiple files (5351 [https://github.com/jupyter/notebook/pull/5351])


	Toolbar buttons tooltip: show help instead of label (5107 [https://github.com/jupyter/notebook/pull/5107])


	Remove unnecessary import of requests_unixsocket (5451 [https://github.com/jupyter/notebook/pull/5451])


	Add ability to cull terminals and track last activity (5372 [https://github.com/jupyter/notebook/pull/5372])


	Code refactoring notebook.js (5352 [https://github.com/jupyter/notebook/pull/5352])


	Install terminado for docs build (5462 [https://github.com/jupyter/notebook/pull/5462])


	Convert notifications JS test to selenium (5455 [https://github.com/jupyter/notebook/pull/5455])


	Add cell attachments to markdown example (5412 [https://github.com/jupyter/notebook/pull/5412])


	Add Japanese document (5231 [https://github.com/jupyter/notebook/pull/5231])


	Migrate Move multiselection test to selenium (5158 [https://github.com/jupyter/notebook/pull/5158])


	Use cmdtrl-enter to run a cell (5120 [https://github.com/jupyter/notebook/pull/5120])


	Fix broken “Raw cell MIME type” dialog (5385 [https://github.com/jupyter/notebook/pull/5385])


	Make a notebook writable after successful save-as (5296 [https://github.com/jupyter/notebook/pull/5296])


	Add actual watch script (4738 [https://github.com/jupyter/notebook/pull/4738])


	Added --autoreload flag to NotebookApp (4795 [https://github.com/jupyter/notebook/pull/4795])


	Enable check_origin on gateway websocket communication (5471 [https://github.com/jupyter/notebook/pull/5471])


	Restore detection of missing terminado package (5465 [https://github.com/jupyter/notebook/pull/5465])


	Culling: ensure last_activity attr exists before use (5355 [https://github.com/jupyter/notebook/pull/5355])


	Added functionality to allow filter kernels by Jupyter Enterprise Gat… (5484 [https://github.com/jupyter/notebook/pull/5484])


	‘Play’ icon for run-cell toolbar button (2922 [https://github.com/jupyter/notebook/pull/2922])


	Bump minimum version of jQuery to 3.5.0 (5491 [https://github.com/jupyter/notebook/pull/5491])


	Remove old JS markdown tests, add a new one in selenium (5497 [https://github.com/jupyter/notebook/pull/5497])


	Add support for more RTL languages (5036 [https://github.com/jupyter/notebook/pull/5036])


	Make markdown cells stay RTL in edit mode (5037 [https://github.com/jupyter/notebook/pull/5037])


	Unforce RTL output display (5039 [https://github.com/jupyter/notebook/pull/5039])


	Fixed multicursor backspacing (4880 [https://github.com/jupyter/notebook/pull/4880])


	Implemented Split Cell for multicursor (4824 [https://github.com/jupyter/notebook/pull/4824])


	Alignment issue [FIXED] (3173 [https://github.com/jupyter/notebook/pull/3173])


	MathJax: Support for \gdef (4407 [https://github.com/jupyter/notebook/pull/4407])


	Another (Minor) Duplicate Code Reduction (5316 [https://github.com/jupyter/notebook/pull/5316])


	Update readme regarding maintenance (5500 [https://github.com/jupyter/notebook/pull/5500])


	Document contents chunks (5508 [https://github.com/jupyter/notebook/pull/5508])


	Backspace deletes empty line (5516 [https://github.com/jupyter/notebook/pull/5516])


	The dropdown submenu at notebook page is not keyboard accessible (4732 [https://github.com/jupyter/notebook/pull/4732])


	Tooltips visible through keyboard navigation for specified buttons (4729 [https://github.com/jupyter/notebook/pull/4729])


	Fix for recursive symlink (4670 [https://github.com/jupyter/notebook/pull/4670])


	Fix for the terminal shutdown issue (4180 [https://github.com/jupyter/notebook/pull/4180])


	Add japanese translation files (4490 [https://github.com/jupyter/notebook/pull/4490])


	Workaround for socket permission errors on Cygwin (4584 [https://github.com/jupyter/notebook/pull/4584])


	Implement optional markdown header and footer files (4043 [https://github.com/jupyter/notebook/pull/4043])


	Remove double link when using custom_display_url (5544 [https://github.com/jupyter/notebook/pull/5544])


	Respect cell.is_editable during find-and-replace (5545 [https://github.com/jupyter/notebook/pull/5545])


	Fix exception causes all over the codebase (5556 [https://github.com/jupyter/notebook/pull/5556]


	Improve login shell heuristics (5588 [https://github.com/jupyter/notebook/pull/5588])


	Added support for JUPYTER_TOKEN_FILE (5587 [https://github.com/jupyter/notebook/pull/5587])


	Kill notebook itself when server cull idle kernel (5593 [https://github.com/jupyter/notebook/pull/5593])


	Implement password hashing with bcrypt (3793 [https://github.com/jupyter/notebook/pull/3793])


	Fix broken links (5600 [https://github.com/jupyter/notebook/pull/5600])


	Russian internationalization support (5571 [https://github.com/jupyter/notebook/pull/5571])


	Add a metadata tag to override notebook direction (ltr/rtl) (5052 [https://github.com/jupyter/notebook/pull/5052])


	Paste two images from clipboard in markdown cell (5598 [https://github.com/jupyter/notebook/pull/5598])


	Add keyboard shortcuts to menu dropdowns (5525 [https://github.com/jupyter/notebook/pull/5525])


	Update codemirror to 5.56.0+components1 (5637 [https://github.com/jupyter/notebook/pull/5637])




Thank you to all the contributors:


	Aaron Myatt


	Adam Blake


	Afshin Taylor Darian


	Aman Bansal


	Ben Thayer


	berendjan


	Bruno P. Kinoshita


	bzinberg


	Christophe Cadilhac


	Daiki Katsuragawa


	David Lukes


	Dmitriy Q


	dmpe


	dylanzjy


	dSchurch


	E. M. Bray


	ErwinRussel


	Felix Mönckemeyer


	Grant Nestor


	Jarrad Whitaker


	Jesus Panales Castillo


	Joshua Zeltser


	Karthikeyan Singaravelan


	Kenichi Ito


	Kevin Bates


	Koki Nishihara


	Kris Wilson


	Kyle Kelley


	Laura Merlo


	levinxo


	Luciano Resende


	Luis Cabezon Manchado


	Madhusudhan Srinivasa


	Matthias Geier


	mattn


	Max Klein


	Min RK


	Mingxuan Lin


	Mohammad Mostafa Farzan


	Niko Felger


	Norah Abanumay


	Onno Broekmans


	PierreMB


	pinarkavak


	Ram Rachum


	Reece Hart


	Remi Rampin


	Rohit Sanjay


	Shane Canon


	Simon Li


	Steinar Sturlaugsson


	Steven Silvester


	taohan16


	Thew Dhanat


	Thomas Kluyver


	Toon Baeyens


	Vidar Tonaas Fauske


	Zachary Sailer






6.0.3


	Dependency updates to fix startup issues on Windows platform


	Add support for nbconvert 6.x


	Creation of recent tab




Thanks for all the contributors:


	Luciano Resende


	Kevin Bates


	ahangsleben


	Zachary Sailer


	Pallavi Bharadwaj


	Thomas Kluyver


	Min RK


	forest0


	Bibo Hao


	Michal Charemza


	Sergey Shevelev


	Shuichiro MAKIGAKI


	krinsman


	TPartida


	Landen McDonald


	Tres DuBiel






6.0.2


	Update JQuery dependency to version 3.4.1 to fix security vulnerability (CVE-2019-11358)


	Update CodeMirror to version 5.48.4 to fix Python formatting issues


	Continue removing obsolete Python 2.x code/dependencies


	Multiple documentation updates




Thanks for all the contributors:


	David Robles


	Jason Grout


	Kerwin Sun


	Kevin Bates


	Kyle Kelley


	Luciano Resende


	Marcus D Sherman


	Sasaki Takeru


	Tom Jarosz


	Vidar Tonaas Fauske


	Wes Turner


	Zachary Sailer






6.0.1


	Attempt to re-establish websocket connection to Gateway (4777 [https://github.com/jupyter/notebook/pull/4777])


	Add missing react-dom js to package data (4772 [https://github.com/jupyter/notebook/pull/4772])




Thanks for all the contributors:


	Eunsoo Park


	Min RK






6.0

This is the first major release of the Jupyter Notebook since version
5.0 (March 2017).

We encourage users to start trying JupyterLab, which has just announced
it’s 1.0 release in preparation for a future transition.


	Remove Python 2.x support in favor of Python 3.5 and higher.


	Multiple accessibility enhancements and bug-fixes.


	Multiple translation enhancements and bug-fixes.


	Remove deprecated ANSI CSS styles.


	Native support to forward requests to Jupyter Gateway(s) (Embedded
NB2KG).


	Use JavaScript to redirect users to notebook homepage.


	Enhanced SSL/TLS security by using PROTOCOL_TLS which selects the
highest ssl/tls protocol version available that both the client and
server support. When PROTOCOL_TLS is not available use
PROTOCOL_SSLv23.


	Add ?no_track_activity=1 argument to allow API requests. to not be
registered as activity (e.g. API calls by external activity
monitors).


	Kernels shutting down due to an idle timeout is no longer considered
an activity-updating event.


	Further improve compatibility with tornado 6 with improved checks
for when websockets are closed.


	Launch the browser with a local file which redirects to the server
address including the authentication token. This prevents another
logged-in user from stealing the token from command line arguments
and authenticating to the server. The single-use token previously
used to mitigate this has been removed. Thanks to Dr. Owain Kenway
for suggesting the local file approach.


	Respect nbconvert entrypoints as sources for exporters


	Update to CodeMirror to 5.37, which includes f-string syntax for
Python 3.6.


	Update jquery-ui to 1.12


	Execute cells by clicking icon in input prompt.


	New “Save as” menu option.


	When serving on a loopback interface, protect against DNS rebinding
by checking the Host header from the browser. This check can be
disabled if necessary by setting NotebookApp.allow_remote_access. (Disabled by default while we work out some Mac issues in
3754 [https://github.com/jupyter/notebook/issues/3754]).


	Add kernel_info_timeout traitlet to enable restarting slow kernels.


	Add custom_display_host config option to override displayed URL.


	Add /metrics endpoint for Prometheus Metrics.


	Optimize large file uploads.


	Allow access control headers to be overriden in
jupyter_notebook_config.py to support greater CORS and proxy
configuration flexibility.


	Add support for terminals on windows.


	Add a “restart and run all” button to the toolbar.


	Frontend/extension-config: allow default json files in a .d
directory.


	Allow setting token via jupyter_token env.


	Cull idle kernels using --MappingKernelManager.cull_idle_timeout.


	Allow read-only notebooks to be trusted.


	Convert JS tests to Selenium.




Security Fixes included in previous minor releases of Jupyter Notebook
and also included in version 6.0.


	Fix Open Redirect vulnerability (CVE-2019-10255) where certain
malicious URLs could redirect from the Jupyter login page to a
malicious site after a successful login.


	Contains a security fix for a cross-site inclusion (XSSI)
vulnerability (CVE-2019–9644), where files at a known URL could be
included in a page from an unauthorized website if the user is
logged into a Jupyter server. The fix involves setting the
X-Content-Type-Options: nosniff header, and applying CSRF checks
previously on all non-GET API requests to GET requests to API
endpoints and the /files/ endpoint.


	Check Host header to more securely protect localhost deployments
from DNS rebinding. This is a pre-emptive measure, not fixing a
known vulnerability. Use .NotebookApp.allow_remote_access and
.NotebookApp.local_hostnames to configure access.


	Upgrade bootstrap to 3.4, fixing an XSS vulnerability, which has
been assigned
CVE-2018-14041 [https://nvd.nist.gov/vuln/detail/CVE-2018-14041].


	Contains a security fix preventing malicious directory names from
being able to execute javascript.


	Contains a security fix preventing nbconvert endpoints from
executing javascript with access to the server API. CVE request
pending.




Thanks for all the contributors:


	AAYUSH SINHA


	Aaron Hall, MBA


	Abhinav Sagar


	Adam Rule


	Adeel Ahmad


	Alex Rothberg


	Amy Skerry-Ryan


	Anastasis Germanidis


	Andrés Sánchez


	Arjun Radhakrishna


	Arovit Narula


	Benda Xu


	Björn Grüning


	Brian E. Granger


	Carol Willing


	Celina Kilcrease


	Chris Holdgraf


	Chris Miller


	Ciaran Langton


	Damian Avila


	Dana Lee


	Daniel Farrell


	Daniel Nicolai


	Darío Hereñú


	Dave Aitken


	Dave Foster


	Dave Hirschfeld


	Denis Ledoux


	Dmitry Mikushin


	Dominic Kuang


	Douglas Hanley


	Elliott Sales de Andrade


	Emilio Talamante Lugo


	Eric Perry


	Ethan T. Hendrix


	Evan Van Dam


	Francesco Franchina


	Frédéric Chapoton


	Félix-Antoine Fortin


	Gabriel


	Gabriel Nützi


	Gabriel Ruiz


	Gestalt LUR


	Grant Nestor


	Gustavo Efeiche


	Harsh Vardhan


	Heng GAO


	Hisham Elsheshtawy


	Hong Xu


	Ian Rose


	Ivan Ogasawara


	J Forde


	Jason Grout


	Jessica B. Hamrick


	Jiaqi Liu


	John Emmons


	Josh Barnes


	Karthik Balakrishnan


	Kevin Bates


	Kirit Thadaka


	Kristian Gregorius Hustad


	Kyle Kelley


	Leo Gallucci


	Lilian Besson


	Lucas Seiki Oshiro


	Luciano Resende


	Luis Angel Rodriguez Guerrero


	M Pacer


	Maarten Breddels


	Mac Knight


	Madicken Munk


	Maitiú Ó Ciaráin


	Marc Udoff


	Mathis HAMMEL


	Mathis Rosenhauer


	Matthias Bussonnier


	Matthias Geier


	Max Vovshin


	Maxime Mouchet


	Michael Chirico


	Michael Droettboom


	Michael Heilman


	Michael Scott Cuthbert


	Michal Charemza


	Mike Boyle


	Milos Miljkovic


	Min RK


	Miro Hrončok


	Nicholas Bollweg


	Nitesh Sawant


	Ondrej Jariabka


	Park Hae Jin


	Paul Ivanov


	Paul Masson


	Peter Parente


	Pierre Tholoniat


	Remco Verhoef


	Roland Weber


	Roman Kornev


	Rosa Swaby


	Roy Hyunjin Han


	Sally


	Sam Lau


	Samar Sultan


	Shiti Saxena


	Simon Biggs


	Spencer Park


	Stephen Ward


	Steve (Gadget) Barnes


	Steven Silvester


	Surya Prakash Susarla


	Syed Shah


	Sylvain Corlay


	Thomas Aarholt


	Thomas Kluyver


	Tim


	Tim Head


	Tim Klever


	Tim Metzler


	Todd


	Tom Jorquera


	Tyler Makaro


	Vaibhav Sagar


	Victor


	Vidar Tonaas Fauske


	Vu Minh Tam


	Vít Tuček


	Will Costello


	Will Starms


	William Hosford


	Xiaohan Li


	Yuvi Panda


	ashley teoh


	nullptr






5.7.8


	Fix regression in restarting kernels in 5.7.5. The restart handler
would return before restart was completed.


	Further improve compatibility with tornado 6 with improved checks
for when websockets are closed.


	Fix regression in 5.7.6 on Windows where .js files could have the
wrong mime-type.


	Fix Open Redirect vulnerability (CVE-2019-10255) where certain
malicious URLs could redirect from the Jupyter login page to a
malicious site after a successful login. 5.7.7 contained only a
partial fix for this issue.






5.7.6

5.7.6 contains a security fix for a cross-site inclusion (XSSI)
vulnerability (CVE-2019–9644), where files at a known URL could be
included in a page from an unauthorized website if the user is logged
into a Jupyter server. The fix involves setting the
X-Content-Type-Options: nosniff header, and applying CSRF checks
previously on all non-GET API requests to GET requests to API endpoints
and the /files/ endpoint.

The attacking page is able to access some contents of files when using
Internet Explorer through script errors, but this has not been
demonstrated with other browsers.



5.7.5


	Fix compatibility with tornado 6 (4392 [https://github.com/jupyter/notebook/pull/4392], 4449 [https://github.com/jupyter/notebook/pull/4449]).


	Fix opening integer filedescriptor during startup on Python 2 (4349 [https://github.com/jupyter/notebook/pull/4349])


	Fix compatibility with asynchronous
[KernelManager.restart_kernel]{.title-ref} methods (4412 [https://github.com/jupyter/notebook/pull/4412])






5.7.4

5.7.4 fixes a bug introduced in 5.7.3, in which the
list_running_servers() function attempts to parse HTML files as JSON,
and consequently crashes (4284 [https://github.com/jupyter/notebook/pull/4284]).



5.7.3

5.7.3 contains one security improvement and one security fix:


	Launch the browser with a local file which redirects to the server
address including the authentication token (4260 [https://github.com/jupyter/notebook/pull/4260]). This prevents another logged-in user from stealing
the token from command line arguments and authenticating to the
server. The single-use token previously used to mitigate this has
been removed. Thanks to Dr. Owain Kenway for suggesting the local
file approach.


	Upgrade bootstrap to 3.4, fixing an XSS vulnerability, which has
been assigned
CVE-2018-14041 [https://nvd.nist.gov/vuln/detail/CVE-2018-14041] (4271 [https://github.com/jupyter/notebook/pull/4271]).






5.7.2

5.7.2 contains a security fix preventing malicious directory names from
being able to execute javascript. CVE request pending.



5.7.1

5.7.1 contains a security fix preventing nbconvert endpoints from
executing javascript with access to the server API. CVE request pending.



5.7.0

New features:


	Update to CodeMirror to 5.37, which includes f-string syntax for
Python 3.6 (3816 [https://github.com/jupyter/notebook/pull/3816])


	Update jquery-ui to 1.12 (3836 [https://github.com/jupyter/notebook/pull/3836])


	Check Host header to more securely protect localhost deployments
from DNS rebinding. This is a pre-emptive measure, not fixing a
known vulnerability (3766 [https://github.com/jupyter/notebook/pull/3766]). Use
.NotebookApp.allow_remote_access and
.NotebookApp.local_hostnames to configure access.


	Allow access-control-allow-headers to be overridden (3886 [https://github.com/jupyter/notebook/pull/3886])


	Allow configuring max_body_size and max_buffer_size (3829 [https://github.com/jupyter/notebook/pull/3829])


	Allow configuring get_secure_cookie keyword-args (3778 [https://github.com/jupyter/notebook/pull/3778])


	Respect nbconvert entrypoints as sources for exporters (3879 [https://github.com/jupyter/notebook/pull/3879])


	Include translation sources in source distributions (3925 [https://github.com/jupyter/notebook/pull/3925], 3931 [https://github.com/jupyter/notebook/pull/3931])


	Various improvements to documentation (3799 [https://github.com/jupyter/notebook/pull/3799], 3800 [https://github.com/jupyter/notebook/pull/3800],
3806 [https://github.com/jupyter/notebook/pull/3806], 3883 [https://github.com/jupyter/notebook/pull/3883], 3908 [https://github.com/jupyter/notebook/pull/3908])




Fixing problems:


	Fix breadcrumb link when running with a base url (3905 [https://github.com/jupyter/notebook/pull/3905])


	Fix possible type error when closing activity stream (3907 [https://github.com/jupyter/notebook/pull/3907])


	Disable metadata editing for non-editable cells (3744 [https://github.com/jupyter/notebook/pull/3744])


	Fix some styling and alignment of prompts caused by regressions in
5.6.0.


	Enter causing page reload in shortcuts editor (3871 [https://github.com/jupyter/notebook/pull/3871])


	Fix uploading to the same file twice (3712 [https://github.com/jupyter/notebook/pull/3712])




See the 5.7 milestone on GitHub for a complete list of pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A5.7]
involved in this release.

Thanks to the following contributors:


	Aaron Hall


	Benjamin Ragan-Kelley


	Bill Major


	bxy007


	Dave Aitken


	Denis Ledoux


	Félix-Antoine Fortin


	Gabriel


	Grant Nestor


	Kevin Bates


	Kristian Gregorius Hustad


	M Pacer


	Madicken Munk


	Maitiu O Ciarain


	Matthias Bussonnier


	Michael Boyle


	Michael Chirico


	Mokkapati, Praneet(ES)


	Peter Parente


	Sally Wilsak


	Steven Silvester


	Thomas Kluyver


	Walter Martin






5.6.0

New features:


	Execute cells by clicking icon in input prompt (3535 [https://github.com/jupyter/notebook/pull/3535], 3687 [https://github.com/jupyter/notebook/pull/3687])


	New “Save as” menu option (3289 [https://github.com/jupyter/notebook/pull/3289])


	When serving on a loopback interface, protect against DNS rebinding
by checking the Host header from the browser (3714 [https://github.com/jupyter/notebook/pull/3714]). This check can be
disabled if necessary by setting NotebookApp.allow_remote_access. (Disabled by default while we work out some Mac issues in
3754 [https://github.com/jupyter/notebook/issues/3754]).


	Add kernel_info_timeout traitlet to enable restarting slow kernels (3665 [https://github.com/jupyter/notebook/pull/3665])


	Add custom_display_host config option to override displayed URL (3668 [https://github.com/jupyter/notebook/pull/3668])


	Add /metrics endpoint for Prometheus Metrics (3490 [https://github.com/jupyter/notebook/pull/3490])


	Update to MathJax 2.7.4 (3751 [https://github.com/jupyter/notebook/pull/3751])


	Update to jQuery 3.3 (3655 [https://github.com/jupyter/notebook/pull/3655])


	Update marked to 0.4 (3686 [https://github.com/jupyter/notebook/pull/3686])




Fixing problems:


	Don’t duplicate token in displayed URL (3656 [https://github.com/jupyter/notebook/pull/3656])


	Clarify displayed URL when listening on all interfaces (3703 [https://github.com/jupyter/notebook/pull/3703])


	Don’t trash non-empty directories on Windows (3673 [https://github.com/jupyter/notebook/pull/3673])


	Include LICENSE file in wheels (3671 [https://github.com/jupyter/notebook/pull/3671])


	Don’t show “0 active kernels” when starting the notebook (3696 [https://github.com/jupyter/notebook/pull/3696])




Testing:


	Add find replace test (3630 [https://github.com/jupyter/notebook/pull/3630])


	Selenium test for deleting all cells (3601 [https://github.com/jupyter/notebook/pull/3601])


	Make creating a new notebook more robust (3726 [https://github.com/jupyter/notebook/pull/3726])




Thanks to the following contributors:


	Arovit Narula (arovit [https://github.com/arovit])


	lucasoshiro (lucasoshiro [https://github.com/lucasoshiro])


	M Pacer (mpacer [https://github.com/mpacer])


	Thomas Kluyver (takluyver [https://github.com/takluyver])


	Todd (toddrme2178 [https://github.com/toddrme2178])


	Yuvi Panda (yuvipanda [https://github.com/yuvipanda])




See the 5.6 milestone on GitHub for a complete list of pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A5.6]
involved in this release.



5.5.0

New features:


	The files list now shows file sizes (3539 [https://github.com/jupyter/notebook/pull/3539])


	Add a quit button in the dashboard (3004 [https://github.com/jupyter/notebook/pull/3004])


	Display hostname in the terminal when running remotely (3356 [https://github.com/jupyter/notebook/pull/3356], 3593 [https://github.com/jupyter/notebook/pull/3593])


	Add slides exportation/download to the menu (3287 [https://github.com/jupyter/notebook/pull/3287])


	Add any extra installed nbconvert exporters to the “Download as”
menu (3323 [https://github.com/jupyter/notebook/pull/3323])


	Editor: warning when overwriting a file that is modified on disk (2783 [https://github.com/jupyter/notebook/pull/2783])


	Display a warning message if cookies are not enabled (3511 [https://github.com/jupyter/notebook/pull/3511])


	Basic __version__ reporting for extensions (3541 [https://github.com/jupyter/notebook/pull/3541])


	Add NotebookApp.terminals_enabled config option (3478 [https://github.com/jupyter/notebook/pull/3478])


	Make buffer time between last modified on disk and last modified on
last save configurable (3273 [https://github.com/jupyter/notebook/pull/3273])


	Allow binding custom shortcuts for ‘close and halt’ (3314 [https://github.com/jupyter/notebook/pull/3314])


	Add description for ‘Trusted’ notification (3386 [https://github.com/jupyter/notebook/pull/3386])


	Add settings['activity_sources'] (3401 [https://github.com/jupyter/notebook/pull/3401])


	Add an output_updated.OutputArea event (3560 [https://github.com/jupyter/notebook/pull/3560])




Fixing problems:


	Fixes to improve web accessibility (3507 [https://github.com/jupyter/notebook/pull/3507])


	Fixed color contrast issue in tree.less (3336 [https://github.com/jupyter/notebook/pull/3336])


	Allow cancelling upload of large files (3373 [https://github.com/jupyter/notebook/pull/3373])


	Don’t clear login cookie on requests without cookie (3380 [https://github.com/jupyter/notebook/pull/3380])


	Don’t trash files on different device to home dir on Linux (3304 [https://github.com/jupyter/notebook/pull/3304])


	Clear waiting asterisks when restarting kernel (3494 [https://github.com/jupyter/notebook/pull/3494])


	Fix output prompt when execution_count missing (3236 [https://github.com/jupyter/notebook/pull/3236])


	Make the ‘changed on disk’ dialog work when displayed twice (3589 [https://github.com/jupyter/notebook/pull/3589])


	Fix going back to root directory with history in notebook list (3411 [https://github.com/jupyter/notebook/pull/3411])


	Allow defining keyboard shortcuts for missing actions (3561 [https://github.com/jupyter/notebook/pull/3561])


	Prevent default on pageup/pagedown when completer is active (3500 [https://github.com/jupyter/notebook/pull/3500])


	Prevent default event handling on new terminal (3497 [https://github.com/jupyter/notebook/pull/3497])


	ConfigManager should not write out default values found in the .d
directory (3485 [https://github.com/jupyter/notebook/pull/3485])


	Fix leak of iopub object in activity monitoring (3424 [https://github.com/jupyter/notebook/pull/3424])


	Javascript lint in notebooklist.js (3409 [https://github.com/jupyter/notebook/pull/3409])


	Some Javascript syntax fixes (3294 [https://github.com/jupyter/notebook/pull/3294])


	Convert native for loop to Array.forEach() (3477 [https://github.com/jupyter/notebook/pull/3477])


	Disable cache when downloading nbconvert output (3484 [https://github.com/jupyter/notebook/pull/3484])


	Add missing digestmod arg to HMAC (3399 [https://github.com/jupyter/notebook/pull/3399])


	Log OSErrors failing to create less-critical files during startup (3384 [https://github.com/jupyter/notebook/pull/3384])


	Use powershell on Windows (3379 [https://github.com/jupyter/notebook/pull/3379])


	API spec improvements, API handler improvements (3368 [https://github.com/jupyter/notebook/pull/3368])


	Set notebook to dirty state after change to kernel metadata (3350 [https://github.com/jupyter/notebook/pull/3350])


	Use CSP header to treat served files as belonging to a separate
origin (3341 [https://github.com/jupyter/notebook/pull/3341])


	Don’t install gettext into builtins (3330 [https://github.com/jupyter/notebook/pull/3330])


	Add missing import _ (3316 [https://github.com/jupyter/notebook/pull/3316],
3326 [https://github.com/jupyter/notebook/pull/3326])


	Write notebook.json file atomically (3305 [https://github.com/jupyter/notebook/pull/3305])


	Fix clicking with modifiers, page title updates (3282 [https://github.com/jupyter/notebook/pull/3282])


	Upgrade jQuery to version 2.2 (3428 [https://github.com/jupyter/notebook/pull/3428])


	Upgrade xterm.js to 3.1.0 (3189 [https://github.com/jupyter/notebook/pull/3189])


	Upgrade moment.js to 2.19.3 (3562 [https://github.com/jupyter/notebook/pull/3562])


	Upgrade CodeMirror to 5.35 (3372 [https://github.com/jupyter/notebook/pull/3372])


	“Require” pyzmq>=17 (3586 [https://github.com/jupyter/notebook/pull/3586])




Documentation:


	Documentation updates and organisation (3584 [https://github.com/jupyter/notebook/pull/3584])


	Add section in docs about privacy (3571 [https://github.com/jupyter/notebook/pull/3571])


	Add explanation on how to change the type of a cell to Markdown (3377 [https://github.com/jupyter/notebook/pull/3377])


	Update docs with confd implementation details (3520 [https://github.com/jupyter/notebook/pull/3520])


	Add more information for where jupyter_notebook_config.py is
located (3346 [https://github.com/jupyter/notebook/pull/3346])


	Document options to enable nbextensions in specific sections (3525 [https://github.com/jupyter/notebook/pull/3525])


	jQuery attribute selector value MUST be surrounded by quotes (3527 [https://github.com/jupyter/notebook/pull/3527])


	Do not execute special notebooks with nbsphinx (3360 [https://github.com/jupyter/notebook/pull/3360])


	Other minor fixes in 3288 [https://github.com/jupyter/notebook/pull/3288],
3528 [https://github.com/jupyter/notebook/pull/3528], 3293 [https://github.com/jupyter/notebook/pull/3293], 3367 [https://github.com/jupyter/notebook/pull/3367]




Testing:


	Testing with Selenium & Sauce labs (3321 [https://github.com/jupyter/notebook/pull/3321])


	Selenium utils + markdown rendering tests (3458 [https://github.com/jupyter/notebook/pull/3458])


	Convert insert cell tests to Selenium (3508 [https://github.com/jupyter/notebook/pull/3508])


	Convert prompt numbers tests to Selenium (3554 [https://github.com/jupyter/notebook/pull/3554])


	Convert delete cells tests to Selenium (3465 [https://github.com/jupyter/notebook/pull/3465])


	Convert undelete cell tests to Selenium (3475 [https://github.com/jupyter/notebook/pull/3475])


	More selenium testing utilities (3412 [https://github.com/jupyter/notebook/pull/3412])


	Only check links when build is trigger by Travis Cron job (3493 [https://github.com/jupyter/notebook/pull/3493])


	Fix Appveyor build errors (3430 [https://github.com/jupyter/notebook/pull/3430])


	Undo patches in teardown before attempting to delete files (3459 [https://github.com/jupyter/notebook/pull/3459])


	Get tests running with tornado 5 (3398 [https://github.com/jupyter/notebook/pull/3398])


	Unpin ipykernel version on Travis (3223 [https://github.com/jupyter/notebook/pull/3223])




Thanks to the following contributors:


	Arovit Narula (arovit [https://github.com/arovit])


	Ashley Teoh (ashleytqy [https://github.com/ashleytqy])


	Nicholas Bollweg (bollwyvl [https://github.com/bollwyvl])


	Alex Rothberg (cancan101 [https://github.com/cancan101])


	Celina Kilcrease (ckilcrease [https://github.com/ckilcrease])


	dabuside (dabuside [https://github.com/dabuside])


	Damian Avila (damianavila [https://github.com/damianavila])


	Dana Lee (danagilliann [https://github.com/danagilliann])


	Dave Hirschfeld (dhirschfeld [https://github.com/dhirschfeld])


	Heng GAO (ehengao [https://github.com/ehengao])


	Leo Gallucci (elgalu [https://github.com/elgalu])


	Evan Van Dam (evandam [https://github.com/evandam])


	forbxy (forbxy [https://github.com/forbxy])


	Grant Nestor (gnestor [https://github.com/gnestor])


	Ethan T. Hendrix (hendrixet [https://github.com/hendrixet])


	Miro Hrončok (hroncok [https://github.com/hroncok])


	Paul Ivanov (ivanov [https://github.com/ivanov])


	Darío Hereñú (kant [https://github.com/kant])


	Kevin Bates (kevin-bates [https://github.com/kevin-bates])


	Maarten Breddels (maartenbreddels [https://github.com/maartenbreddels])


	Michael Droettboom (mdboom [https://github.com/mdboom])


	Min RK (minrk [https://github.com/minrk])


	M Pacer (mpacer [https://github.com/mpacer])


	Peter Parente (parente [https://github.com/parente])


	Paul Masson (paulmasson [https://github.com/paulmasson])


	Philipp Rudiger (philippjfr [https://github.com/philippjfr])


	Mac Knight (Shels1909 [https://github.com/Shels1909])


	Hisham Elsheshtawy (Sheshtawy [https://github.com/Sheshtawy])


	Simon Biggs (SimonBiggs [https://github.com/SimonBiggs])


	Sunil Hari (@sunilhari)


	Thomas Kluyver (takluyver [https://github.com/takluyver])


	Tim Klever (tklever [https://github.com/tklever])


	Gabriel Ruiz (unnamedplay-r [https://github.com/unnamedplay-r])


	Vaibhav Sagar (vaibhavsagar [https://github.com/vaibhavsagar])


	William Hosford (whosford [https://github.com/whosford])


	Hong (xuhdev [https://github.com/xuhdev])




See the 5.5 milestone on GitHub for a complete list of pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A5.5]
involved in this release.



5.4.1

A security release to fix CVE-2018-8768 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8768].

Thanks to Alex [https://hackerone.com/pisarenko] for identifying this
bug, and Jonathan Kamens and Scott Sanderson at Quantopian for verifying
it and bringing it to our attention.



5.4.0


	Fix creating files and folders after navigating directories in the
dashboard (3264 [https://github.com/jupyter/notebook/pull/3264]).


	Enable printing notebooks in colour, removing the CSS that made
everything black and white (3212 [https://github.com/jupyter/notebook/pull/3212]).


	Limit the completion options displayed in the notebook to 1000, to
avoid performance issues with very long lists (3195 [https://github.com/jupyter/notebook/pull/3195]).


	Accessibility improvements in tree.html (3271 [https://github.com/jupyter/notebook/pull/3271]).


	Added alt-text to the kernel logo image in the notebook UI (3228 [https://github.com/jupyter/notebook/pull/3228]).


	Added a test on Travis CI to flag if symlinks are accidentally
introduced in the future. This should prevent the issue that
necessitated release-5.3.1{.interpreted-text role=”ref”} (3227 [https://github.com/jupyter/notebook/pull/3227]).


	Use lowercase letters for random IDs generated in our Javascript (3264 [https://github.com/jupyter/notebook/pull/3264]).


	Removed duplicate code setting TextCell.notebook (3256 [https://github.com/jupyter/notebook/pull/3256]).




Thanks to the following contributors:


	Alex Soderman (asoderman [https://github.com/asoderman])


	Matthias Bussonnier (Carreau [https://github.com/Carreau])


	Min RK (minrk [https://github.com/minrk])


	Nitesh Sawant (ns23 [https://github.com/ns23])


	Thomas Kluyver (takluyver [https://github.com/takluyver])


	Yuvi Panda (yuvipanda [https://github.com/yuvipanda])




See the 5.4 milestone on GitHub for a complete list of pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A5.4]
involved in this release.



5.3.1

Replaced a symlink in the repository with a copy, to fix issues
installing on Windows (3220 [https://github.com/jupyter/notebook/pull/3220]).



5.3.0

This release introduces a couple noteable improvements, such as terminal
support for Windows and support for OS trash (files deleted from the
notebook dashboard are moved to the OS trash vs. deleted permanently).


	Add support for terminals on windows (3087 [https://github.com/jupyter/notebook/pull/3087]).


	Add a “restart and run all” button to the toolbar (2965 [https://github.com/jupyter/notebook/pull/2965]).


	Send files to os trash mechanism on delete (1968 [https://github.com/jupyter/notebook/pull/1968]).


	Allow programmatic copy to clipboard (3088 [https://github.com/jupyter/notebook/pull/3088]).


	Use DOM History API for navigating between directories in the file
browser (3115 [https://github.com/jupyter/notebook/pull/3115]).


	Add translated files to folder(docs-translations) (3065 [https://github.com/jupyter/notebook/pull/3065]).


	Allow non empty dirs to be deleted (3108 [https://github.com/jupyter/notebook/pull/3108]).


	Set cookie on base_url (2959 [https://github.com/jupyter/notebook/pull/2959]).


	Allow token-authenticated requests cross-origin by default (2920 [https://github.com/jupyter/notebook/pull/2920]).


	Change cull_idle_timeout_minimum to 1 from 300 (2910 [https://github.com/jupyter/notebook/pull/2910]).


	Config option to shut down server after n seconds with no kernels (2963 [https://github.com/jupyter/notebook/pull/2963]).


	Display a “close” button on load notebook error (3176 [https://github.com/jupyter/notebook/pull/3176]).


	Add action to command pallette to run CodeMirror’s “indentAuto”
on selection (3175 [https://github.com/jupyter/notebook/pull/3175]).


	Add option to specify extra services (3158 [https://github.com/jupyter/notebook/pull/3158]).


	Warn_bad_name should not use global name (3160 [https://github.com/jupyter/notebook/pull/3160]).


	Avoid overflow of hidden form (3148 [https://github.com/jupyter/notebook/pull/3148]).


	Fix shutdown trans loss (3147 [https://github.com/jupyter/notebook/pull/3147]).


	Find available kernelspecs more efficiently (3136 [https://github.com/jupyter/notebook/pull/3136]).


	Don’t try to translate missing help strings (3122 [https://github.com/jupyter/notebook/pull/3122]).


	Frontend/extension-config: allow default json files in a .d
directory (3116 [https://github.com/jupyter/notebook/pull/3116]).


	Use [requirejs]{.title-ref} vs. [require]{.title-ref} (3097 [https://github.com/jupyter/notebook/pull/3097]).


	Fixes some ui bugs in firefox #3044 (3058 [https://github.com/jupyter/notebook/pull/3058]).


	Compare non-specific language code when choosing to use arabic
numerals (3055 [https://github.com/jupyter/notebook/pull/3055]).


	Fix save-script deprecation (3053 [https://github.com/jupyter/notebook/pull/3053]).


	Include moment locales in package_data (3051 [https://github.com/jupyter/notebook/pull/3051]).


	Fix moment locale loading in bidi support (3048 [https://github.com/jupyter/notebook/pull/3048]).


	Tornado 5: periodiccallback loop arg will be removed (3034 [https://github.com/jupyter/notebook/pull/3034]).


	Use [/files]{.title-ref} prefix for pdf-like files (3031 [https://github.com/jupyter/notebook/pull/3031]).


	Add folder for document translation (3022 [https://github.com/jupyter/notebook/pull/3022]).


	When login-in via token, let a chance for user to set the password (3008 [https://github.com/jupyter/notebook/pull/3008]).


	Switch to jupyter_core implementation of ensure_dir_exists (3002 [https://github.com/jupyter/notebook/pull/3002]).


	Send http shutdown request on ‘stop’ subcommand (3000 [https://github.com/jupyter/notebook/pull/3000]).


	Work on loading ui translations (2969 [https://github.com/jupyter/notebook/pull/2969]).


	Fix ansi inverse (2967 [https://github.com/jupyter/notebook/pull/2967]).


	Add send2trash to requirements for building docs (2964 [https://github.com/jupyter/notebook/pull/2964]).


	I18n readme.md improvement (2962 [https://github.com/jupyter/notebook/pull/2962]).


	Add ‘reason’ field to json error responses (2958 [https://github.com/jupyter/notebook/pull/2958]).


	Add some padding for stream outputs (3194 [https://github.com/jupyter/notebook/pull/3194]).


	Always use setuptools in setup.py (3206 [https://github.com/jupyter/notebook/pull/3206]).


	Fix clearing cookies on logout when base_url is configured (3207 [https://github.com/jupyter/notebook/pull/3207]).




Thanks to the following contributors:


	bacboc (bacboc [https://github.com/bacboc])


	Steven Silvester (blink1073 [https://github.com/blink1073])


	Matthias Bussonnier (Carreau [https://github.com/Carreau])


	ChungJooHo (ChungJooHo [https://github.com/ChungJooHo])


	edida (edida [https://github.com/edida])


	Francesco Franchina (ferdas)


	forbxy (forbxy [https://github.com/forbxy])


	Grant Nestor (gnestor [https://github.com/gnestor])


	Josh Barnes (jcb91 [https://github.com/jcb91])


	JocelynDelalande (JocelynDelalande [https://github.com/JocelynDelalande])


	Karthik Balakrishnan (karthikb351 [https://github.com/karthikb351])


	Kevin Bates (kevin-bates [https://github.com/kevin-bates])


	Kirit Thadaka (kirit93 [https://github.com/kirit93])


	Lilian Besson (Naereen [https://github.com/Naereen])


	Maarten Breddels (maartenbreddels [https://github.com/maartenbreddels])


	Madhu94 (Madhu94 [https://github.com/Madhu94])


	Matthias Geier (mgeier [https://github.com/mgeier])


	Michael Heilman (mheilman [https://github.com/mheilman])


	Min RK (minrk [https://github.com/minrk])


	PHaeJin (PHaeJin [https://github.com/PHaeJin])


	Sukneet (Sukneet [https://github.com/Sukneet])


	Thomas Kluyver (takluyver [https://github.com/takluyver])




See the 5.3 milestone on GitHub for a complete list of pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A5.3]
involved in this release.



5.2.1


	Fix invisible CodeMirror cursor at specific browser zoom levels (2983 [https://github.com/jupyter/notebook/pull/2983]).


	Fix nbconvert handler causing broken export to PDF (2981 [https://github.com/jupyter/notebook/pull/2981]).


	Fix the prompt_area argument of the output area constructor. (2961 [https://github.com/jupyter/notebook/pull/2961]).


	Handle a compound extension in new_untitled (2949 [https://github.com/jupyter/notebook/pull/2949]).


	Allow disabling offline message buffering (2916 [https://github.com/jupyter/notebook/pull/2916]).




Thanks to the following contributors:


	Steven Silvester (blink1073 [https://github.com/blink1073])


	Grant Nestor (gnestor [https://github.com/gnestor])


	Jason Grout (jasongrout [https://github.com/jasongrout])


	Min RK (minrk [https://github.com/minrk])


	M Pacer (mpacer [https://github.com/mpacer])




See the 5.2.1 milestone on GitHub for a complete list of pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A5.2.1]
involved in this release.



5.2.0


	Allow setting token via jupyter_token env (2921 [https://github.com/jupyter/notebook/pull/2921]).


	Fix some errors caused by raising 403 in get_current_user (2919 [https://github.com/jupyter/notebook/pull/2919]).


	Register contents_manager.files_handler_class directly (2917 [https://github.com/jupyter/notebook/pull/2917]).


	Update viewable_extensions (2913 [https://github.com/jupyter/notebook/pull/2913]).


	Show edit shortcuts modal after shortcuts modal is hidden (2912 [https://github.com/jupyter/notebook/pull/2912]).


	Improve edit/view behavior (2911 [https://github.com/jupyter/notebook/pull/2911]).


	The root directory of the notebook server should never be hidden (2907 [https://github.com/jupyter/notebook/pull/2907]).


	Fix notebook require config to match tools/build-main (2888 [https://github.com/jupyter/notebook/pull/2888]).


	Give page constructor default arguments (2887 [https://github.com/jupyter/notebook/pull/2887]).


	Fix codemirror.less to match codemirror’s expected padding layout (2880 [https://github.com/jupyter/notebook/pull/2880]).


	Add x-xsrftoken to access-control-allow-headers (2876 [https://github.com/jupyter/notebook/pull/2876]).


	Buffer messages when websocket connection is interrupted (2871 [https://github.com/jupyter/notebook/pull/2871]).


	Load locale dynamically only when not en-us (2866 [https://github.com/jupyter/notebook/pull/2866]).


	Changed key strength to 2048 bits (2861 [https://github.com/jupyter/notebook/pull/2861]).


	Resync jsversion with python version (2860 [https://github.com/jupyter/notebook/pull/2860]).


	Allow copy operation on modified, read-only notebook (2854 [https://github.com/jupyter/notebook/pull/2854]).


	Update error handling on apihandlers (2853 [https://github.com/jupyter/notebook/pull/2853]).


	Test python 3.6 on travis, drop 3.3 (2852 [https://github.com/jupyter/notebook/pull/2852]).


	Avoid base64-literals in image tests (2851 [https://github.com/jupyter/notebook/pull/2851]).


	Upgrade xterm.js to 2.9.2 (2849 [https://github.com/jupyter/notebook/pull/2849]).


	Changed all python variables named file to file_name to not override
built_in file (2830 [https://github.com/jupyter/notebook/pull/2830]).


	Add more doc tests (2823 [https://github.com/jupyter/notebook/pull/2823]).


	Typos fix (2815 [https://github.com/jupyter/notebook/pull/2815]).


	Rename and update license [ci skip] (2810 [https://github.com/jupyter/notebook/pull/2810]).


	Travis builds doc (2808 [https://github.com/jupyter/notebook/pull/2808]).


	Pull request i18n (2804 [https://github.com/jupyter/notebook/pull/2804]).


	Factor out output_prompt_function, as is done with input prompt (2774 [https://github.com/jupyter/notebook/pull/2774]).


	Use rfc5987 encoding for filenames (2767 [https://github.com/jupyter/notebook/pull/2767]).


	Added path to the resources metadata, the same as in
from_filename(…) in nbconvert.exporters.py (2753 [https://github.com/jupyter/notebook/pull/2753]).


	Make “extrakeys” consistent for notebook and editor (2745 [https://github.com/jupyter/notebook/pull/2745]).


	Bidi support (2357 [https://github.com/jupyter/notebook/pull/2357]).




Special thanks to samarsultan [https://github.com/samarsultan] and the
Arabic Competence and Globalization Center Team at IBM Egypt for adding
RTL (right-to-left) support to the notebook!

See the 5.2 milestone on GitHub for a complete list of
issues [https://github.com/jupyter/notebook/issues?utf8=%E2%9C%93&q=is%3Aissue%20milestone%3A5.2]
and pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A5.2]
involved in this release.



5.1.0


	Preliminary i18n implementation (2140 [https://github.com/jupyter/notebook/pull/2140]).


	Expose URL with auth token in notebook UI (2666 [https://github.com/jupyter/notebook/pull/2666]).


	Fix search background style (2387 [https://github.com/jupyter/notebook/pull/2387]).


	List running notebooks without requiring --allow-root (2421 [https://github.com/jupyter/notebook/pull/2421]).


	Allow session of type other than notebook (2559 [https://github.com/jupyter/notebook/pull/2559]).


	Fix search background style (2387 [https://github.com/jupyter/notebook/pull/2387]).


	Fix some Markdown styling issues (2571 [https://github.com/jupyter/notebook/pull/2571]), (2691 [https://github.com/jupyter/notebook/pull/2691]) and (2534 [https://github.com/jupyter/notebook/pull/2534]).


	Remove keymaps that conflict with non-English keyboards (2535 [https://github.com/jupyter/notebook/pull/2535]).


	Add session-specific favicons (notebook, terminal, file) (2452 [https://github.com/jupyter/notebook/pull/2452]).


	Add /api/shutdown handler (2507 [https://github.com/jupyter/notebook/pull/2507]).


	Include metadata when copying a cell (2349 [https://github.com/jupyter/notebook/pull/2349]).


	Stop notebook server from command line (2388 [https://github.com/jupyter/notebook/pull/2388]).


	Improve “View” and “Edit” file handling in dashboard (2449 [https://github.com/jupyter/notebook/pull/2449]) and (2402 [https://github.com/jupyter/notebook/pull/2402]).


	Provide a promise to replace use of the
app_initialized.NotebookApp event (2710 [https://github.com/jupyter/notebook/pull/2710]).


	Fix disabled collapse/expand output button (2681 [https://github.com/jupyter/notebook/pull/2681]).


	Cull idle kernels using --MappingKernelManager.cull_idle_timeout (2215 [https://github.com/jupyter/notebook/pull/2215]).


	Allow read-only notebooks to be trusted (2718 [https://github.com/jupyter/notebook/pull/2718]).




See the 5.1 milestone on GitHub for a complete list of
issues [https://github.com/jupyter/notebook/issues?utf8=%E2%9C%93&q=is%3Aissue%20milestone%3A5.1]
and pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A5.1]
involved in this release.



5.0.0

This is the first major release of the Jupyter Notebook since version
4.0 was created by the “Big Split” of IPython and Jupyter.

We encourage users to start trying JupyterLab in preparation for a
future transition.

We have merged more than 300 pull requests since 4.0. Some of the major
user-facing changes are described here.


File sorting in the dashboard

Files in the dashboard may now be sorted by last modified date or name
(943 [https://github.com/jupyter/notebook/pull/943]):

[image: image]



Cell tags

There is a new cell toolbar for adding cell tags
(2048 [https://github.com/jupyter/notebook/pull/2048]):

[image: image]

Cell tags are a lightweight way to customise the behaviour of tools
working with notebooks; we’re working on building support for them into
tools like nbconvert [https://nbconvert.readthedocs.io/en/latest/] and
nbval [https://github.com/computationalmodelling/nbval]. To start using
tags, select Tags in the View > Cell Toolbar menu in a notebook.

The UI for editing cell tags is basic for now; we hope to improve it in
future releases.



Table style

The default styling for tables in the notebook has been updated
(1776 [https://github.com/jupyter/notebook/pull/1776]).

Before:

[image: image]

After:

[image: image]



Customise keyboard shortcuts

You can now edit keyboard shortcuts for Command Mode within the UI
(1347 [https://github.com/jupyter/notebook/pull/1347]):

[image: image]

See the Help > Edit Keyboard Shortcuts menu item and follow the
instructions.



Other additions


	You can copy and paste cells between notebooks, using
Ctrl-C{.interpreted-text role=”kbd”} and
Ctrl-V{.interpreted-text role=”kbd”} (Cmd-C{.interpreted-text
role=”kbd”} and Cmd-V{.interpreted-text role=”kbd”} on Mac).


	It’s easier to configure a password for the notebook with the new
jupyter notebook password command (2007 [https://github.com/jupyter/notebook/pull/2007]).


	The file list can now be ordered by last modified or by name (943 [https://github.com/jupyter/notebook/pull/943]).


	Markdown cells now support attachments. Simply drag and drop an
image from your desktop to a markdown cell to add it. Unlike
relative links that you enter manually, attachments are embedded in
the notebook itself. An unreferenced attachment will be
automatically scrubbed from the notebook on save (621 [https://github.com/jupyter/notebook/pull/621]).


	Undoing cell deletion now supports undeleting multiple cells. Cells
may not be in the same order as before their deletion, depending on
the actions you did on the meantime, but this should should help
reduce the impact of accidentally deleting code.


	The file browser now has Edit and View buttons.


	The file browser now supports moving multiple files at once (1088 [https://github.com/jupyter/notebook/pull/1088]).


	The Notebook will refuse to run as root unless the --allow-root
flag is given (1115 [https://github.com/jupyter/notebook/pull/1115]).


	Keyboard shortcuts are now declarative (1234 [https://github.com/jupyter/notebook/pull/1234]).


	Toggling line numbers can now affect all cells (1312 [https://github.com/jupyter/notebook/pull/1312]).


	Add more visible Trusted and Untrusted notifications (1658 [https://github.com/jupyter/notebook/pull/1658]).


	The favicon (browser shortcut icon) now changes to indicate when the
kernel is busy (1837 [https://github.com/jupyter/notebook/pull/1837]).


	Header and toolbar visibility is now persisted in nbconfig and
across sessions (1769 [https://github.com/jupyter/notebook/pull/1769]).


	Load server extensions with ConfigManager so that merge happens
recursively, unlike normal config values, to make it load more
consistently with frontend extensions(2108 [https://github.com/jupyter/notebook/pull/2108]).


	The notebook server now supports the bundler
API [https://jupyter-notebook.readthedocs.io/en/latest/extending/bundler_extensions.html]
from the jupyter_cms incubator
project [https://github.com/jupyter-incubator/contentmanagement] (1579 [https://github.com/jupyter/notebook/pull/1579]).


	The notebook server now provides information about kernel activity
in its kernel resource API (1827 [https://github.com/jupyter/notebook/pull/1827]).




Remember that upgrading notebook only affects the user interface.
Upgrading kernels and libraries may also provide new features, better
stability and integration with the notebook interface.




4.4.0


	Allow override of output callbacks to redirect output messages. This
is used to implement the ipywidgets Output widget, for example.


	Fix an async bug in message handling by allowing comm message
handlers to return a promise which halts message processing until
the promise resolves.




See the 4.4 milestone on GitHub for a complete list of
issues [https://github.com/jupyter/notebook/issues?utf8=%E2%9C%93&q=is%3Aissue%20milestone%3A4.4]
and pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A4.4]
involved in this release.



4.3.2

4.3.2 is a patch release with a bug fix for CodeMirror and improved
handling of the “editable” cell metadata field.


	Monkey-patch for CodeMirror that resolves
#2037 [https://github.com/jupyter/notebook/issues/2037] without
breaking #1967 [https://github.com/jupyter/notebook/issues/1967]


	Read-only ("editable": false) cells can be executed but cannot be
split, merged, or deleted




See the 4.3.2 milestone on GitHub for a complete list of
issues [https://github.com/jupyter/notebook/issues?utf8=%E2%9C%93&q=is%3Aissue%20milestone%3A4.3.2]
and pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A4.3.2]
involved in this release.



4.3.1

4.3.1 is a patch release with a security patch, a couple bug fixes, and
improvements to the newly-released token authentication.

Security fix:


	CVE-2016-9971. Fix CSRF vulnerability, where malicious forms could
create untitled files and start kernels (no remote execution or
modification of existing files) for users of certain browsers (Firefox, Internet Explorer / Edge). All previous notebook releases
are affected.




Bug fixes:


	Fix carriage return handling


	Make the font size more robust against fickle browsers


	Ignore resize events that bubbled up and didn’t come from window


	Add Authorization to allowed CORS headers


	Downgrade CodeMirror to 5.16 while we figure out issues in Safari




Other improvements:


	Better docs for token-based authentication


	Further highlight token info in log output when autogenerated




See the 4.3.1 milestone on GitHub for a complete list of
issues [https://github.com/jupyter/notebook/issues?utf8=%E2%9C%93&q=is%3Aissue%20milestone%3A4.3.1]
and pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A4.3.1]
involved in this release.



4.3.0

4.3 is a minor release with many bug fixes and improvements. The biggest
user-facing change is the addition of token authentication, which is
enabled by default. A token is generated and used when your browser is
opened automatically, so you shouldn’t have to enter anything in the
default circumstances. If you see a login page (e.g. by switching
browsers, or launching on a new port with --no-browser), you get a
login URL with the token from the command jupyter notebook list, which
you can paste into your browser.

Highlights:


	API for creating mime-type based renderer extensions using
OutputArea.register_mime_type and Notebook.render_cell_output
methods. See
mimerender-cookiecutter [https://github.com/jupyterlab/mimerender-cookiecutter]
for reference implementations and cookiecutter.


	Enable token authentication by default. See
server_security{.interpreted-text role=”ref”} for more details.


	Update security docs to reflect new signature system


	Switched from term.js to xterm.js




Bug fixes:


	Ensure variable is set if exc_info is falsey


	Catch and log handler exceptions in events.trigger


	Add debug log for static file paths


	Don’t check origin on token-authenticated requests


	Remove leftover print statement


	Fix highlighting of Python code blocks


	json_errors should be outermost decorator on API handlers


	Fix remove old nbserver info files


	Fix notebook mime type on download links


	Fix carriage symbol behavior


	Fix terminal styles


	Update dead links in docs


	If kernel is broken, start a new session


	Include cross-origin check when allowing login URL redirects




Other improvements:


	Allow JSON output data with mime type application/*+json


	Allow kernelspecs to have spaces in them for backward compat


	Allow websocket connections from scripts


	Allow None for post_save_hook


	Upgrade CodeMirror to 5.21


	Upgrade xterm to 2.1.0


	Docs for using comms


	Set dirty flag when output arrives


	Set ws-url data attribute when accessing a notebook terminal


	Add base aliases for nbextensions


	Include @ operator in CodeMirror IPython mode


	Extend mathjax_url docstring


	Load nbextension in predictable order


	Improve the error messages for nbextensions


	Include cross-origin check when allowing login URL redirects




See the 4.3 milestone on GitHub for a complete list of
issues [https://github.com/jupyter/notebook/issues?utf8=%E2%9C%93&q=is%3Aissue%20milestone%3A4.3%20]
and pull
requests [https://github.com/jupyter/notebook/pulls?utf8=%E2%9C%93&q=is%3Apr%20milestone%3A4.3%20]
involved in this release.



4.2.3

4.2.3 is a small bugfix release on 4.2.


Highlights:





	Fix regression in 4.2.2 that delayed loading custom.js until after
notebook_loaded and app_initialized events have fired.


	Fix some outdated docs and links.






4.2.2

4.2.2 is a small bugfix release on 4.2, with an important security fix.
All users are strongly encouraged to upgrade to 4.2.2.


Highlights:





	Security fix: CVE-2016-6524, where untrusted latex output could
be added to the page in a way that could execute javascript.


	Fix missing POST in OPTIONS responses.


	Fix for downloading non-ascii filenames.


	Avoid clobbering ssl_options, so that users can specify more
detailed SSL configuration.


	Fix inverted load order in nbconfig, so user config has highest
priority.


	Improved error messages here and there.






4.2.1

4.2.1 is a small bugfix release on 4.2. Highlights:


	Compatibility fixes for some versions of ipywidgets


	Fix for ignored CSS on Windows


	Fix specifying destination when installing nbextensions






4.2.0

Release 4.2 adds a new API for enabling and installing extensions.
Extensions can now be enabled at the system-level, rather than just
per-user. An API is defined for installing directly from a Python
package, as well.

Highlighted changes:


	Upgrade MathJax to 2.6 to fix vertical-bar appearing on some
equations.


	Restore ability for notebook directory to be root (4.1 regression)


	Large outputs are now throttled, reducing the ability of output
floods to kill the browser.


	Fix the notebook ignoring cell executions while a kernel is starting
by queueing the messages.


	Fix handling of url prefixes (e.g. JupyterHub) in terminal and edit
pages.


	Support nested SVGs in output.




And various other fixes and improvements.



4.1.0

Bug fixes:


	Properly reap zombie subprocesses


	Fix cross-origin problems


	Fix double-escaping of the base URL prefix


	Handle invalid unicode filenames more gracefully


	Fix ANSI color-processing


	Send keepalive messages for web terminals


	Fix bugs in the notebook tour




UI changes:


	Moved the cell toolbar selector into the View menu. Added a button
that triggers a “hint” animation to the main toolbar so users can
find the new location. (Click here to see a
screencast [https://cloud.githubusercontent.com/assets/335567/10711889/59665a5a-7a3e-11e5-970f-86b89592880c.gif]
)


[image: image]






	Added Restart & Run All to the Kernel menu. Users can also bind
it to a keyboard shortcut on action
restart-kernel-and-run-all-cells.


	Added multiple-cell selection. Users press Shift-Up/Down or
Shift-K/J to extend selection in command mode. Various actions
such as cut/copy/paste, execute, and cell type conversions apply to
all selected cells.

[image: image]



	Added a command palette for executing Jupyter actions by name. Users
press Cmd/Ctrl-Shift-P or click the new command palette icon on
the toolbar.

[image: image]



	Added a Find and Replace dialog to the Edit menu. Users can also
press F in command mode to show the dialog.

[image: image]





Other improvements:


	Custom KernelManager methods can be Tornado coroutines, allowing
async operations.


	Make clearing output optional when rewriting input with
set_next_input(replace=True).


	Added support for TLS client authentication via
--NotebookApp.client-ca.


	Added tags to jupyter/notebook releases on DockerHub. latest
continues to track the master branch.




See the 4.1 milestone on GitHub for a complete list of
issues [https://github.com/jupyter/notebook/issues?page=3&q=milestone%3A4.1+is%3Aclosed+is%3Aissue&utf8=%E2%9C%93]
and pull
requests [https://github.com/jupyter/notebook/pulls?q=milestone%3A4.1+is%3Aclosed+is%3Apr]
handled.



4.0.x


4.0.6


	fix installation of mathjax support files


	fix some double-escape regressions in 4.0.5


	fix a couple of cases where errors could prevent opening a notebook






4.0.5

Security fixes for maliciously crafted files.


	CVE-2015-6938 [http://www.openwall.com/lists/oss-security/2015/09/02/3]:
malicious filenames


	CVE-2015-7337 [http://www.openwall.com/lists/oss-security/2015/09/16/3]:
malicious binary files in text editor.




Thanks to Jonathan Kamens at Quantopian and Juan Broullón for the
reports.



4.0.4


	Fix inclusion of mathjax-safe extension






4.0.2


	Fix launching the notebook on Windows


	Fix the path searched for frontend config






4.0.0

First release of the notebook as a standalone package.






            

          

      

      

    

  

    
      
          
            
  


Comms

Comms allow custom messages between the frontend and the kernel. They are used,
for instance, in ipywidgets [https://ipywidgets.readthedocs.io/en/latest/] to
update widget state.

A comm consists of a pair of objects, in the kernel and the frontend, with an
automatically assigned unique ID. When one side sends a message, a callback on
the other side is triggered with that message data. Either side, the frontend
or kernel, can open or close the comm.


See also


	Custom Messages [https://jupyter-client.readthedocs.io/en/latest/messaging.html#custom-messages]
	The messaging specification section on comms








Opening a comm from the kernel

First, the function to accept the comm must be available on the frontend. This
can either be specified in a requirejs module, or registered in a registry, for
example when an extension is loaded.
This example shows a frontend comm target registered in a registry:

Jupyter.notebook.kernel.comm_manager.register_target('my_comm_target',
    function(comm, msg) {
        // comm is the frontend comm instance
        // msg is the comm_open message, which can carry data

        // Register handlers for later messages:
        comm.on_msg(function(msg) {...});
        comm.on_close(function(msg) {...});
        comm.send({'foo': 0});
    });





Now that the frontend comm is registered, you can open the comm from the kernel:

from ipykernel.comm import Comm

# Use comm to send a message from the kernel
my_comm = Comm(target_name='my_comm_target', data={'foo': 1})
my_comm.send({'foo': 2})

# Add a callback for received messages.
@my_comm.on_msg
def _recv(msg):
    # Use msg['content']['data'] for the data in the message





This example uses the IPython kernel; it’s up to each language kernel what API,
if any, it offers for using comms.



Opening a comm from the frontend

This is very similar to above, but in reverse. First, a comm target must be
registered in the kernel. For instance, this may be done by code displaying
output: it will register a target in the kernel, and then display output
containing Javascript to connect to it.

def target_func(comm, open_msg):
    # comm is the kernel Comm instance
    # msg is the comm_open message

    # Register handler for later messages
    @comm.on_msg
    def _recv(msg):
        # Use msg['content']['data'] for the data in the message
        comm.send({'echo': msg['content']['data']})

    # Send data to the frontend on creation
    comm.send({'foo': 5})

get_ipython().kernel.comm_manager.register_target('my_comm_target', target_func)





This example uses the IPython kernel again; this example will be different in
other kernels that support comms. Refer to the specific language kernel’s
documentation for comms support.

And then open the comm from the frontend:

const comm = Jupyter.notebook.kernel.comm_manager.new_comm('my_comm_target', {'foo': 6})
// Send data
comm.send({'foo': 7})

// Register a handler
comm.on_msg(function(msg) {
    console.log(msg.content.data.foo);
});









            

          

      

      

    

  

    
      
          
            
  


Configuration Overview

Beyond the default configuration settings, you can configure a rich array of
options to suit your workflow. Here are areas that are commonly configured
when using Jupyter Notebook:



	Jupyter’s common configuration system


	Notebook server


	Notebook front-end client


	Notebook extensions







Let’s look at highlights of each area.


Jupyter’s Common Configuration system

Jupyter applications, from the Notebook to JupyterHub to nbgrader, share a
common configuration system. The process for creating a configuration file
and editing settings is similar for all the Jupyter applications.



	Jupyter’s Common Configuration Approach [https://jupyter.readthedocs.io/en/latest/use/config.html]


	Common Directories and File Locations [https://jupyter.readthedocs.io/en/latest/use/jupyter-directories.html]


	Language kernels [https://jupyter.readthedocs.io/en/latest/projects/kernels.html]


	traitlets [https://traitlets.readthedocs.io/en/latest/config.html#module-traitlets.config]
provide a low-level architecture for configuration.









Notebook server

The Notebook server runs the language kernel and communicates with the
front-end Notebook client (i.e. the familiar notebook interface).



	Configuring the Notebook server


To create a jupyter_notebook_config.py file in the .jupyter
directory, with all the defaults commented out, use the following
command:

    $ jupyter notebook --generate-config

:ref:`Command line arguments for configuration <config>` settings are
documented in the configuration file and the user documentation.










	Running a Notebook server


	Related: Configuring a language kernel [https://ipython.readthedocs.io/en/latest/install/kernel_install.html]
to run in the Notebook server enables your server to run other languages, like R or Julia.









Notebook front-end client



	Configuring the notebook frontend
	How front end configuration works

	Example - Changing the notebook’s default indentation

	Example - Restoring the notebook’s default indentation

	Persisting configuration settings











Notebook extensions


	Distributing Jupyter Extensions as Python Packages [https://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Distributing%20Jupyter%20Extensions%20as%20Python%20Packages.html#Distributing-Jupyter-Extensions-as-Python-Packages]


	Extending the Notebook [https://jupyter-notebook.readthedocs.io/en/latest/extending/index.html]




Security in Jupyter notebooks: Since security
policies vary from organization to organization, we encourage you to
consult with your security team on settings that would be best for your use
cases. Our documentation offers some responsible security practices, and we
recommend becoming familiar with the practices.





            

          

      

      

    

  

    
      
          
            
  


Configuring the notebook frontend


Note

The ability to configure the notebook frontend UI and preferences is
still a work in progress.



This document is a rough explanation on how you can persist some configuration
options for the notebook JavaScript.

There is no exhaustive list of all the configuration options as most options
are passed down to other libraries, which means that non valid
configuration can be ignored without any error messages.


How front end configuration works

The frontend configuration system works as follows:



	get a handle of a configurable JavaScript object.


	access its configuration attribute.


	update its configuration attribute with a JSON patch.









Example - Changing the notebook’s default indentation

This example explains how to change the default setting indentUnit
for CodeMirror Code Cells:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {
      CodeCell:{
        cm_config:{indentUnit:2}
      }
    }
config.update(patch)





You can enter the previous snippet in your browser’s JavaScript console once.
Then reload the notebook page in your browser. Now, the preferred indent unit
should be equal to two spaces. The custom setting persists and you do not need
to reissue the patch on new notebooks.

indentUnit, used in this example, is one of the many CodeMirror options [https://codemirror.net/doc/manual.html#option_indentUnit] which are available
for configuration.

You can similarly change the options of the file editor by entering the following
snippet in the browser’s Javascript console once (from a file editing page).:

var config = Jupyter.editor.config
var patch = {
      Editor: {
        codemirror_options: {
          indentUnit: 2
        }
      }
    }
config.update(patch)







Example - Restoring the notebook’s default indentation

If you want to restore a notebook frontend preference to its default value,
you will enter a JSON patch with a null value for the preference setting.

For example, let’s restore the indent setting indentUnit to its default of
four spaces. Enter the following code snippet in your JavaScript console:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {
      CodeCell:{
        cm_config:{indentUnit: null} // only change here.
      }
    }
config.update(patch)





Reload the notebook in your browser and the default indent should again be two
spaces.



Persisting configuration settings

Under the hood, Jupyter will persist the preferred configuration settings in
~/.jupyter/nbconfig/<section>.json, with <section>
taking various value depending on the page where the configuration is issued.
<section> can take various values like notebook, tree, and
editor. A common section contains configuration settings shared by all
pages.





            

          

      

      

    

  

    
      
          
            
  


Config file and command line options

The notebook server can be run with a variety of command line arguments.
A list of available options can be found below in the options section.

Defaults for these options can also be set by creating a file named
jupyter_notebook_config.py in your Jupyter folder. The Jupyter
folder is in your home directory, ~/.jupyter.

To create a jupyter_notebook_config.py file, with all the defaults
commented out, you can use the following command line:

$ jupyter notebook --generate-config






Options

This list of options can be generated by running the following and hitting
enter:

$ jupyter notebook --help






	Application.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s



	Application.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template



	Application.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.



	Application.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout



	Application.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)



	JupyterApp.answer_yesBool
	Default: False

Answer yes to any prompts.



	JupyterApp.config_fileUnicode
	Default: ''

Full path of a config file.



	JupyterApp.config_file_nameUnicode
	Default: ''

Specify a config file to load.



	JupyterApp.generate_configBool
	Default: False

Generate default config file.



	JupyterApp.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s



	JupyterApp.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template



	JupyterApp.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.



	JupyterApp.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout



	JupyterApp.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)



	NotebookApp.allow_credentialsBool
	Default: False

Set the Access-Control-Allow-Credentials: true header



	NotebookApp.allow_originUnicode
	Default: ''

Set the Access-Control-Allow-Origin header


Use ‘*’ to allow any origin to access your server.

Takes precedence over allow_origin_pat.






	NotebookApp.allow_origin_patUnicode
	Default: ''

Use a regular expression for the Access-Control-Allow-Origin header


Requests from an origin matching the expression will get replies with:


Access-Control-Allow-Origin: origin




where origin is the origin of the request.

Ignored if allow_origin is set.






	NotebookApp.allow_password_changeBool
	Default: True

Allow password to be changed at login for the notebook server.


While loggin in with a token, the notebook server UI will give the opportunity to
the user to enter a new password at the same time that will replace
the token login mechanism.

This can be set to false to prevent changing password from the UI/API.






	NotebookApp.allow_remote_accessBool
	Default: False

Allow requests where the Host header doesn’t point to a local server


By default, requests get a 403 forbidden response if the ‘Host’ header
shows that the browser thinks it’s on a non-local domain.
Setting this option to True disables this check.

This protects against ‘DNS rebinding’ attacks, where a remote web server
serves you a page and then changes its DNS to send later requests to a
local IP, bypassing same-origin checks.

Local IP addresses (such as 127.0.0.1 and ::1) are allowed as local,
along with hostnames configured in local_hostnames.






	NotebookApp.allow_rootBool
	Default: False

Whether to allow the user to run the notebook as root.



	NotebookApp.answer_yesBool
	Default: False

Answer yes to any prompts.



	NotebookApp.authenticate_prometheusBool
	Default: True


	“
	Require authentication to access prometheus metrics.







	NotebookApp.autoreloadBool
	Default: False

Reload the webapp when changes are made to any Python src files.



	NotebookApp.base_project_urlUnicode
	Default: '/'

DEPRECATED use base_url



	NotebookApp.base_urlUnicode
	Default: '/'

The base URL for the notebook server.


Leading and trailing slashes can be omitted,
and will automatically be added.






	NotebookApp.browserUnicode
	Default: ''


	Specify what command to use to invoke a web
	browser when opening the notebook. If not specified, the
default browser will be determined by the webbrowser
standard library module, which allows setting of the
BROWSER environment variable to override it.







	NotebookApp.certfileUnicode
	Default: ''

The full path to an SSL/TLS certificate file.



	NotebookApp.client_caUnicode
	Default: ''

The full path to a certificate authority certificate for SSL/TLS client authentication.



	NotebookApp.config_fileUnicode
	Default: ''

Full path of a config file.



	NotebookApp.config_file_nameUnicode
	Default: ''

Specify a config file to load.



	NotebookApp.config_manager_classType
	Default: 'notebook.services.config.manager.ConfigManager'

The config manager class to use



	NotebookApp.contents_manager_classTypeFromClasses
	Default: 'notebook.services.contents.largefilemanager.LargeFileManager'

The notebook manager class to use.



	NotebookApp.cookie_optionsDict
	Default: {}

Extra keyword arguments to pass to set_secure_cookie. See tornado’s set_secure_cookie docs for details.



	NotebookApp.cookie_secretBytes
	Default: b''


	The random bytes used to secure cookies.
	By default this is a new random number every time you start the Notebook.
Set it to a value in a config file to enable logins to persist across server sessions.

Note: Cookie secrets should be kept private, do not share config files with
cookie_secret stored in plaintext (you can read the value from a file).







	NotebookApp.cookie_secret_fileUnicode
	Default: ''

The file where the cookie secret is stored.



	NotebookApp.custom_display_urlUnicode
	Default: ''

Override URL shown to users.


Replace actual URL, including protocol, address, port and base URL,
with the given value when displaying URL to the users. Do not change
the actual connection URL. If authentication token is enabled, the
token is added to the custom URL automatically.

This option is intended to be used when the URL to display to the user
cannot be determined reliably by the Jupyter notebook server (proxified
or containerized setups for example).






	NotebookApp.default_urlUnicode
	Default: '/tree'

The default URL to redirect to from /



	NotebookApp.disable_check_xsrfBool
	Default: False

Disable cross-site-request-forgery protection


Jupyter notebook 4.3.1 introduces protection from cross-site request forgeries,
requiring API requests to either:


	originate from pages served by this server (validated with XSRF cookie and token), or


	authenticate with a token




Some anonymous compute resources still desire the ability to run code,
completely without authentication.
These services can disable all authentication and security checks,
with the full knowledge of what that implies.






	NotebookApp.enable_mathjaxBool
	Default: True

Whether to enable MathJax for typesetting math/TeX


MathJax is the javascript library Jupyter uses to render math/LaTeX. It is
very large, so you may want to disable it if you have a slow internet
connection, or for offline use of the notebook.

When disabled, equations etc. will appear as their untransformed TeX source.






	NotebookApp.extra_nbextensions_pathList
	Default: []

extra paths to look for Javascript notebook extensions



	NotebookApp.extra_servicesList
	Default: []

handlers that should be loaded at higher priority than the default services



	NotebookApp.extra_static_pathsList
	Default: []

Extra paths to search for serving static files.


This allows adding javascript/css to be available from the notebook server machine,
or overriding individual files in the IPython






	NotebookApp.extra_template_pathsList
	Default: []

Extra paths to search for serving jinja templates.


Can be used to override templates from notebook.templates.






	NotebookApp.file_to_runUnicode
	Default: ''

No description



	NotebookApp.generate_configBool
	Default: False

Generate default config file.



	NotebookApp.get_secure_cookie_kwargsDict
	Default: {}

Extra keyword arguments to pass to get_secure_cookie. See tornado’s get_secure_cookie docs for details.



	NotebookApp.ignore_minified_jsBool
	Default: False

Deprecated: Use minified JS file or not, mainly use during dev to avoid JS recompilation



	NotebookApp.iopub_data_rate_limitFloat
	Default: 1000000


	(bytes/sec)
	Maximum rate at which stream output can be sent on iopub before they are
limited.







	NotebookApp.iopub_msg_rate_limitFloat
	Default: 1000


	(msgs/sec)
	Maximum rate at which messages can be sent on iopub before they are
limited.







	NotebookApp.ipUnicode
	Default: 'localhost'

The IP address the notebook server will listen on.



	NotebookApp.jinja_environment_optionsDict
	Default: {}

Supply extra arguments that will be passed to Jinja environment.



	NotebookApp.jinja_template_varsDict
	Default: {}

Extra variables to supply to jinja templates when rendering.



	NotebookApp.kernel_manager_classType
	Default: 'notebook.services.kernels.kernelmanager.MappingKernelManager'

The kernel manager class to use.



	NotebookApp.kernel_spec_manager_classType
	Default: 'jupyter_client.kernelspec.KernelSpecManager'

The kernel spec manager class to use. Should be a subclass
of jupyter_client.kernelspec.KernelSpecManager.

The Api of KernelSpecManager is provisional and might change
without warning between this version of Jupyter and the next stable one.



	NotebookApp.keyfileUnicode
	Default: ''

The full path to a private key file for usage with SSL/TLS.



	NotebookApp.local_hostnamesList
	Default: ['localhost']

Hostnames to allow as local when allow_remote_access is False.


Local IP addresses (such as 127.0.0.1 and ::1) are automatically accepted
as local as well.






	NotebookApp.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s



	NotebookApp.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template



	NotebookApp.log_jsonBool
	Default: False

Set to True to enable JSON formatted logs. Run “pip install notebook[json-logging]” to install the required dependent packages. Can also be set using the environment variable JUPYTER_ENABLE_JSON_LOGGING=true.



	NotebookApp.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.



	NotebookApp.login_handler_classType
	Default: 'notebook.auth.login.LoginHandler'

The login handler class to use.



	NotebookApp.logout_handler_classType
	Default: 'notebook.auth.logout.LogoutHandler'

The logout handler class to use.



	NotebookApp.mathjax_configUnicode
	Default: 'TeX-AMS-MML_HTMLorMML-full,Safe'

The MathJax.js configuration file that is to be used.



	NotebookApp.mathjax_urlUnicode
	Default: ''


	A custom url for MathJax.js.
	Should be in the form of a case-sensitive url to MathJax,
for example:  /static/components/MathJax/MathJax.js







	NotebookApp.max_body_sizeInt
	Default: 536870912

Sets the maximum allowed size of the client request body, specified in
the Content-Length request header field. If the size in a request
exceeds the configured value, a malformed HTTP message is returned to
the client.

Note: max_body_size is applied even in streaming mode.



	NotebookApp.max_buffer_sizeInt
	Default: 536870912

Gets or sets the maximum amount of memory, in bytes, that is allocated
for use by the buffer manager.



	NotebookApp.min_open_files_limitInt
	Default: 0

Gets or sets a lower bound on the open file handles process resource
limit. This may need to be increased if you run into an
OSError: [Errno 24] Too many open files.
This is not applicable when running on Windows.



	NotebookApp.nbserver_extensionsDict
	Default: {}

Dict of Python modules to load as notebook server extensions. Entry values can be used to enable and disable the loading of the extensions. The extensions will be loaded in alphabetical order.



	NotebookApp.notebook_dirUnicode
	Default: ''

The directory to use for notebooks and kernels.



	NotebookApp.open_browserBool
	Default: True


	Whether to open in a browser after starting.
	The specific browser used is platform dependent and
determined by the python standard library webbrowser
module, unless it is overridden using the –browser
(NotebookApp.browser) configuration option.







	NotebookApp.passwordUnicode
	Default: ''

Hashed password to use for web authentication.


To generate, type in a python/IPython shell:


from notebook.auth import passwd; passwd()




The string should be of the form type:salt:hashed-password.






	NotebookApp.password_requiredBool
	Default: False


	Forces users to use a password for the Notebook server.
	This is useful in a multi user environment, for instance when
everybody in the LAN can access each other’s machine through ssh.

In such a case, serving the notebook server on localhost is not secure
since any user can connect to the notebook server via ssh.







	NotebookApp.portInt
	Default: 8888

The port the notebook server will listen on (env: JUPYTER_PORT).



	NotebookApp.port_retriesInt
	Default: 50

The number of additional ports to try if the specified port is not available (env: JUPYTER_PORT_RETRIES).



	NotebookApp.pylabUnicode
	Default: 'disabled'

DISABLED: use %pylab or %matplotlib in the notebook to enable matplotlib.



	NotebookApp.quit_buttonBool
	Default: True


	If True, display a button in the dashboard to quit
	(shutdown the notebook server).







	NotebookApp.rate_limit_windowFloat
	Default: 3


	(sec) Time window used to
	check the message and data rate limits.







	NotebookApp.reraise_server_extension_failuresBool
	Default: False

Reraise exceptions encountered loading server extensions?



	NotebookApp.server_extensionsList
	Default: []

DEPRECATED use the nbserver_extensions dict instead



	NotebookApp.session_manager_classType
	Default: 'notebook.services.sessions.sessionmanager.SessionManager'

The session manager class to use.



	NotebookApp.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout



	NotebookApp.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)



	NotebookApp.shutdown_no_activity_timeoutInt
	Default: 0

Shut down the server after N seconds with no kernels or terminals running and no activity. This can be used together with culling idle kernels (MappingKernelManager.cull_idle_timeout) to shutdown the notebook server when it’s not in use. This is not precisely timed: it may shut down up to a minute later. 0 (the default) disables this automatic shutdown.



	NotebookApp.sockUnicode
	Default: ''

The UNIX socket the notebook server will listen on.



	NotebookApp.sock_modeUnicode
	Default: '0600'

The permissions mode for UNIX socket creation (default: 0600).



	NotebookApp.ssl_optionsDict
	Default: {}


	Supply SSL options for the tornado HTTPServer.
	See the tornado docs for details.







	NotebookApp.terminado_settingsDict
	Default: {}

Supply overrides for terminado. Currently only supports “shell_command”. On Unix, if “shell_command” is not provided, a non-login shell is launched by default when the notebook server is connected to a terminal, a login shell otherwise.



	NotebookApp.terminals_enabledBool
	Default: True

Set to False to disable terminals.


This does not make the notebook server more secure by itself.
Anything the user can in a terminal, they can also do in a notebook.

Terminals may also be automatically disabled if the terminado package
is not available.






	NotebookApp.tokenUnicode
	Default: '<generated>'

Token used for authenticating first-time connections to the server.


The token can be read from the file referenced by JUPYTER_TOKEN_FILE or set directly
with the JUPYTER_TOKEN environment variable.

When no password is enabled,
the default is to generate a new, random token.

Setting to an empty string disables authentication altogether, which is NOT RECOMMENDED.






	NotebookApp.tornado_settingsDict
	Default: {}

Supply overrides for the tornado.web.Application that the Jupyter notebook uses.



	NotebookApp.trust_xheadersBool
	Default: False

Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-For headers sent by the upstream reverse proxy. Necessary if the proxy handles SSL



	NotebookApp.use_redirect_fileBool
	Default: True

Disable launching browser by redirect file


For versions of notebook > 5.7.2, a security feature measure was added that
prevented the authentication token used to launch the browser from being visible.
This feature makes it difficult for other users on a multi-user system from
running code in your Jupyter session as you.

However, some environments (like Windows Subsystem for Linux (WSL) and Chromebooks),
launching a browser using a redirect file can lead the browser failing to load.
This is because of the difference in file structures/paths between the runtime and
the browser.

Disabling this setting to False will disable this behavior, allowing the browser
to launch by using a URL and visible token (as before).






	NotebookApp.webapp_settingsDict
	Default: {}

DEPRECATED, use tornado_settings



	NotebookApp.webbrowser_open_newInt
	Default: 2


	Specify Where to open the notebook on startup. This is the
	new argument passed to the standard library method webbrowser.open.
The behaviour is not guaranteed, but depends on browser support. Valid
values are:



	2 opens a new tab,


	1 opens a new window,


	0 opens in an existing window.







See the webbrowser.open documentation for details.







	NotebookApp.websocket_compression_optionsAny
	Default: None

Set the tornado compression options for websocket connections.

This value will be returned from WebSocketHandler.get_compression_options().
None (default) will disable compression.
A dict (even an empty one) will enable compression.

See the tornado docs for WebSocketHandler.get_compression_options for details.



	NotebookApp.websocket_urlUnicode
	Default: ''


	The base URL for websockets,
	if it differs from the HTTP server (hint: it almost certainly doesn’t).

Should be in the form of an HTTP origin: ws[s]://hostname[:port]







	ConnectionFileMixin.connection_fileUnicode
	Default: ''

JSON file in which to store connection info [default: kernel-<pid>.json]


This file will contain the IP, ports, and authentication key needed to connect
clients to this kernel. By default, this file will be created in the security dir
of the current profile, but can be specified by absolute path.






	ConnectionFileMixin.control_portInt
	Default: 0

set the control (ROUTER) port [default: random]



	ConnectionFileMixin.hb_portInt
	Default: 0

set the heartbeat port [default: random]



	ConnectionFileMixin.iopub_portInt
	Default: 0

set the iopub (PUB) port [default: random]



	ConnectionFileMixin.ipUnicode
	Default: ''


	Set the kernel’s IP address [default localhost].
	If the IP address is something other than localhost, then
Consoles on other machines will be able to connect
to the Kernel, so be careful!







	ConnectionFileMixin.shell_portInt
	Default: 0

set the shell (ROUTER) port [default: random]



	ConnectionFileMixin.stdin_portInt
	Default: 0

set the stdin (ROUTER) port [default: random]



	ConnectionFileMixin.transportany of 'tcp'``|’ipc’`` (case-insensitive)
	Default: 'tcp'

No description



	KernelManager.autorestartBool
	Default: True

Should we autorestart the kernel if it dies.



	KernelManager.connection_fileUnicode
	Default: ''

JSON file in which to store connection info [default: kernel-<pid>.json]


This file will contain the IP, ports, and authentication key needed to connect
clients to this kernel. By default, this file will be created in the security dir
of the current profile, but can be specified by absolute path.






	KernelManager.control_portInt
	Default: 0

set the control (ROUTER) port [default: random]



	KernelManager.hb_portInt
	Default: 0

set the heartbeat port [default: random]



	KernelManager.iopub_portInt
	Default: 0

set the iopub (PUB) port [default: random]



	KernelManager.ipUnicode
	Default: ''


	Set the kernel’s IP address [default localhost].
	If the IP address is something other than localhost, then
Consoles on other machines will be able to connect
to the Kernel, so be careful!







	KernelManager.shell_portInt
	Default: 0

set the shell (ROUTER) port [default: random]



	KernelManager.shutdown_wait_timeFloat
	Default: 5.0

Time to wait for a kernel to terminate before killing it, in seconds. When a shutdown request is initiated, the kernel will be immediately sent an interrupt (SIGINT), followedby a shutdown_request message, after 1/2 of shutdown_wait_time`it will be sent a terminate (SIGTERM) request, and finally at the end of `shutdown_wait_time will be killed (SIGKILL). terminate and kill may be equivalent on windows.  Note that this value can beoverridden by the in-use kernel provisioner since shutdown times mayvary by provisioned environment.



	KernelManager.stdin_portInt
	Default: 0

set the stdin (ROUTER) port [default: random]



	KernelManager.transportany of 'tcp'``|’ipc’`` (case-insensitive)
	Default: 'tcp'

No description



	Session.buffer_thresholdInt
	Default: 1024

Threshold (in bytes) beyond which an object’s buffer should be extracted to avoid pickling.



	Session.check_pidBool
	Default: True

Whether to check PID to protect against calls after fork.


This check can be disabled if fork-safety is handled elsewhere.






	Session.copy_thresholdInt
	Default: 65536

Threshold (in bytes) beyond which a buffer should be sent without copying.



	Session.debugBool
	Default: False

Debug output in the Session



	Session.digest_history_sizeInt
	Default: 65536

The maximum number of digests to remember.


The digest history will be culled when it exceeds this value.






	Session.item_thresholdInt
	Default: 64


	The maximum number of items for a container to be introspected for custom serialization.
	Containers larger than this are pickled outright.







	Session.keyCBytes
	Default: b''

execution key, for signing messages.



	Session.keyfileUnicode
	Default: ''

path to file containing execution key.



	Session.metadataDict
	Default: {}

Metadata dictionary, which serves as the default top-level metadata dict for each message.



	Session.packerDottedObjectName
	Default: 'json'


	The name of the packer for serializing messages.
	Should be one of ‘json’, ‘pickle’, or an import name
for a custom callable serializer.







	Session.sessionCUnicode
	Default: ''

The UUID identifying this session.



	Session.signature_schemeUnicode
	Default: 'hmac-sha256'


	The digest scheme used to construct the message signatures.
	Must have the form ‘hmac-HASH’.







	Session.unpackerDottedObjectName
	Default: 'json'


	The name of the unpacker for unserializing messages.
	Only used with custom functions for packer.







	Session.usernameUnicode
	Default: 'username'

Username for the Session. Default is your system username.



	MultiKernelManager.default_kernel_nameUnicode
	Default: 'python3'

The name of the default kernel to start



	MultiKernelManager.kernel_manager_classDottedObjectName
	Default: 'jupyter_client.ioloop.IOLoopKernelManager'


	The kernel manager class.  This is configurable to allow
	subclassing of the KernelManager for customized behavior.







	MultiKernelManager.shared_contextBool
	Default: True

Share a single zmq.Context to talk to all my kernels



	MappingKernelManager.allowed_message_typesList
	Default: []


	White list of allowed kernel message types.
	When the list is empty, all message types are allowed.







	MappingKernelManager.buffer_offline_messagesBool
	Default: True


	Whether messages from kernels whose frontends have disconnected should be buffered in-memory.
	When True (default), messages are buffered and replayed on reconnect,
avoiding lost messages due to interrupted connectivity.
Disable if long-running kernels will produce too much output while
no frontends are connected.







	MappingKernelManager.cull_busyBool
	Default: False


	Whether to consider culling kernels which are busy.
	Only effective if cull_idle_timeout > 0.







	MappingKernelManager.cull_connectedBool
	Default: False


	Whether to consider culling kernels which have one or more connections.
	Only effective if cull_idle_timeout > 0.







	MappingKernelManager.cull_idle_timeoutInt
	Default: 0


	Timeout (in seconds) after which a kernel is considered idle and ready to be culled.
	Values of 0 or lower disable culling. Very short timeouts may result in kernels being culled
for users with poor network connections.







	MappingKernelManager.cull_intervalInt
	Default: 300

The interval (in seconds) on which to check for idle kernels exceeding the cull timeout value.



	MappingKernelManager.default_kernel_nameUnicode
	Default: 'python3'

The name of the default kernel to start



	MappingKernelManager.kernel_info_timeoutFloat
	Default: 60


	Timeout for giving up on a kernel (in seconds).
	On starting and restarting kernels, we check whether the
kernel is running and responsive by sending kernel_info_requests.
This sets the timeout in seconds for how long the kernel can take
before being presumed dead.
This affects the MappingKernelManager (which handles kernel restarts)
and the ZMQChannelsHandler (which handles the startup).







	MappingKernelManager.kernel_manager_classDottedObjectName
	Default: 'jupyter_client.ioloop.IOLoopKernelManager'


	The kernel manager class.  This is configurable to allow
	subclassing of the KernelManager for customized behavior.







	MappingKernelManager.root_dirUnicode
	Default: ''

No description



	MappingKernelManager.shared_contextBool
	Default: True

Share a single zmq.Context to talk to all my kernels



	KernelSpecManager.allowed_kernelspecsSet
	Default: set()

List of allowed kernel names.


By default, all installed kernels are allowed.






	KernelSpecManager.ensure_native_kernelBool
	Default: True


	If there is no Python kernelspec registered and the IPython
	kernel is available, ensure it is added to the spec list.







	KernelSpecManager.kernel_spec_classType
	Default: 'jupyter_client.kernelspec.KernelSpec'


	The kernel spec class.  This is configurable to allow
	subclassing of the KernelSpecManager for customized behavior.







	KernelSpecManager.whitelistSet
	Default: set()

Deprecated, use KernelSpecManager.allowed_kernelspecs



	ContentsManager.allow_hiddenBool
	Default: False

Allow access to hidden files



	ContentsManager.checkpointsInstance
	Default: None

No description



	ContentsManager.checkpoints_classType
	Default: 'notebook.services.contents.checkpoints.Checkpoints'

No description



	ContentsManager.checkpoints_kwargsDict
	Default: {}

No description



	ContentsManager.files_handler_classType
	Default: 'notebook.files.handlers.FilesHandler'

handler class to use when serving raw file requests.


Default is a fallback that talks to the ContentsManager API,
which may be inefficient, especially for large files.

Local files-based ContentsManagers can use a StaticFileHandler subclass,
which will be much more efficient.

Access to these files should be Authenticated.






	ContentsManager.files_handler_paramsDict
	Default: {}

Extra parameters to pass to files_handler_class.


For example, StaticFileHandlers generally expect a path argument
specifying the root directory from which to serve files.






	ContentsManager.hide_globsList
	Default: ['__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dyl...

Glob patterns to hide in file and directory listings.



	ContentsManager.pre_save_hookAny
	Default: None

Python callable or importstring thereof


To be called on a contents model prior to save.

This can be used to process the structure,
such as removing notebook outputs or other side effects that
should not be saved.

It will be called as (all arguments passed by keyword):

hook(path=path, model=model, contents_manager=self)






	model: the model to be saved. Includes file contents.
Modifying this dict will affect the file that is stored.


	path: the API path of the save destination


	contents_manager: this ContentsManager instance









	ContentsManager.root_dirUnicode
	Default: '/'

No description



	ContentsManager.untitled_directoryUnicode
	Default: 'Untitled Folder'

The base name used when creating untitled directories.



	ContentsManager.untitled_fileUnicode
	Default: 'untitled'

The base name used when creating untitled files.



	ContentsManager.untitled_notebookUnicode
	Default: 'Untitled'

The base name used when creating untitled notebooks.



	FileManagerMixin.use_atomic_writingBool
	Default: True


	By default notebooks are saved on disk on a temporary file and then if successfully written, it replaces the old ones.
	This procedure, namely ‘atomic_writing’, causes some bugs on file system without operation order enforcement (like some networked fs).
If set to False, the new notebook is written directly on the old one which could fail (eg: full filesystem or quota )







	FileContentsManager.allow_hiddenBool
	Default: False

Allow access to hidden files



	FileContentsManager.checkpointsInstance
	Default: None

No description



	FileContentsManager.checkpoints_classType
	Default: 'notebook.services.contents.checkpoints.Checkpoints'

No description



	FileContentsManager.checkpoints_kwargsDict
	Default: {}

No description



	FileContentsManager.delete_to_trashBool
	Default: True


	If True (default), deleting files will send them to the
	platform’s trash/recycle bin, where they can be recovered. If False,
deleting files really deletes them.







	FileContentsManager.files_handler_classType
	Default: 'notebook.files.handlers.FilesHandler'

handler class to use when serving raw file requests.


Default is a fallback that talks to the ContentsManager API,
which may be inefficient, especially for large files.

Local files-based ContentsManagers can use a StaticFileHandler subclass,
which will be much more efficient.

Access to these files should be Authenticated.






	FileContentsManager.files_handler_paramsDict
	Default: {}

Extra parameters to pass to files_handler_class.


For example, StaticFileHandlers generally expect a path argument
specifying the root directory from which to serve files.






	FileContentsManager.hide_globsList
	Default: ['__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dyl...

Glob patterns to hide in file and directory listings.



	FileContentsManager.post_save_hookAny
	Default: None

Python callable or importstring thereof


to be called on the path of a file just saved.

This can be used to process the file on disk,
such as converting the notebook to a script or HTML via nbconvert.

It will be called as (all arguments passed by keyword):

hook(os_path=os_path, model=model, contents_manager=instance)






	path: the filesystem path to the file just written


	model: the model representing the file


	contents_manager: this ContentsManager instance









	FileContentsManager.pre_save_hookAny
	Default: None

Python callable or importstring thereof


To be called on a contents model prior to save.

This can be used to process the structure,
such as removing notebook outputs or other side effects that
should not be saved.

It will be called as (all arguments passed by keyword):

hook(path=path, model=model, contents_manager=self)






	model: the model to be saved. Includes file contents.
Modifying this dict will affect the file that is stored.


	path: the API path of the save destination


	contents_manager: this ContentsManager instance









	FileContentsManager.root_dirUnicode
	Default: ''

No description



	FileContentsManager.save_scriptBool
	Default: False

DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0



	FileContentsManager.untitled_directoryUnicode
	Default: 'Untitled Folder'

The base name used when creating untitled directories.



	FileContentsManager.untitled_fileUnicode
	Default: 'untitled'

The base name used when creating untitled files.



	FileContentsManager.untitled_notebookUnicode
	Default: 'Untitled'

The base name used when creating untitled notebooks.



	FileContentsManager.use_atomic_writingBool
	Default: True


	By default notebooks are saved on disk on a temporary file and then if successfully written, it replaces the old ones.
	This procedure, namely ‘atomic_writing’, causes some bugs on file system without operation order enforcement (like some networked fs).
If set to False, the new notebook is written directly on the old one which could fail (eg: full filesystem or quota )







	NotebookNotary.algorithmany of 'sha3_512'``|’sha3_256’|’sha3_224’|’sha256’|’sha224’|’blake2s’|’sha3_384’|’blake2b’|’sha512’|’sha1’|’sha384’|’md5’``
	Default: 'sha256'

The hashing algorithm used to sign notebooks.



	NotebookNotary.data_dirUnicode
	Default: ''

The storage directory for notary secret and database.



	NotebookNotary.db_fileUnicode
	Default: ''


	The sqlite file in which to store notebook signatures.
	By default, this will be in your Jupyter data directory.
You can set it to ‘:memory:’ to disable sqlite writing to the filesystem.







	NotebookNotary.secretBytes
	Default: b''

The secret key with which notebooks are signed.



	NotebookNotary.secret_fileUnicode
	Default: ''

The file where the secret key is stored.



	NotebookNotary.store_factoryCallable
	Default: traitlets.Undefined


	A callable returning the storage backend for notebook signatures.
	The default uses an SQLite database.







	AsyncMultiKernelManager.default_kernel_nameUnicode
	Default: 'python3'

The name of the default kernel to start



	AsyncMultiKernelManager.kernel_manager_classDottedObjectName
	Default: 'jupyter_client.ioloop.AsyncIOLoopKernelManager'


	The kernel manager class.  This is configurable to allow
	subclassing of the AsyncKernelManager for customized behavior.







	AsyncMultiKernelManager.shared_contextBool
	Default: True

Share a single zmq.Context to talk to all my kernels



	AsyncMappingKernelManager.allowed_message_typesList
	Default: []


	White list of allowed kernel message types.
	When the list is empty, all message types are allowed.







	AsyncMappingKernelManager.buffer_offline_messagesBool
	Default: True


	Whether messages from kernels whose frontends have disconnected should be buffered in-memory.
	When True (default), messages are buffered and replayed on reconnect,
avoiding lost messages due to interrupted connectivity.
Disable if long-running kernels will produce too much output while
no frontends are connected.







	AsyncMappingKernelManager.cull_busyBool
	Default: False


	Whether to consider culling kernels which are busy.
	Only effective if cull_idle_timeout > 0.







	AsyncMappingKernelManager.cull_connectedBool
	Default: False


	Whether to consider culling kernels which have one or more connections.
	Only effective if cull_idle_timeout > 0.







	AsyncMappingKernelManager.cull_idle_timeoutInt
	Default: 0


	Timeout (in seconds) after which a kernel is considered idle and ready to be culled.
	Values of 0 or lower disable culling. Very short timeouts may result in kernels being culled
for users with poor network connections.







	AsyncMappingKernelManager.cull_intervalInt
	Default: 300

The interval (in seconds) on which to check for idle kernels exceeding the cull timeout value.



	AsyncMappingKernelManager.default_kernel_nameUnicode
	Default: 'python3'

The name of the default kernel to start



	AsyncMappingKernelManager.kernel_info_timeoutFloat
	Default: 60


	Timeout for giving up on a kernel (in seconds).
	On starting and restarting kernels, we check whether the
kernel is running and responsive by sending kernel_info_requests.
This sets the timeout in seconds for how long the kernel can take
before being presumed dead.
This affects the MappingKernelManager (which handles kernel restarts)
and the ZMQChannelsHandler (which handles the startup).







	AsyncMappingKernelManager.kernel_manager_classDottedObjectName
	Default: 'jupyter_client.ioloop.AsyncIOLoopKernelManager'


	The kernel manager class.  This is configurable to allow
	subclassing of the AsyncKernelManager for customized behavior.







	AsyncMappingKernelManager.root_dirUnicode
	Default: ''

No description



	AsyncMappingKernelManager.shared_contextBool
	Default: True

Share a single zmq.Context to talk to all my kernels



	GatewayKernelManager.allowed_message_typesList
	Default: []


	White list of allowed kernel message types.
	When the list is empty, all message types are allowed.







	GatewayKernelManager.buffer_offline_messagesBool
	Default: True


	Whether messages from kernels whose frontends have disconnected should be buffered in-memory.
	When True (default), messages are buffered and replayed on reconnect,
avoiding lost messages due to interrupted connectivity.
Disable if long-running kernels will produce too much output while
no frontends are connected.







	GatewayKernelManager.cull_busyBool
	Default: False


	Whether to consider culling kernels which are busy.
	Only effective if cull_idle_timeout > 0.







	GatewayKernelManager.cull_connectedBool
	Default: False


	Whether to consider culling kernels which have one or more connections.
	Only effective if cull_idle_timeout > 0.







	GatewayKernelManager.cull_idle_timeoutInt
	Default: 0


	Timeout (in seconds) after which a kernel is considered idle and ready to be culled.
	Values of 0 or lower disable culling. Very short timeouts may result in kernels being culled
for users with poor network connections.







	GatewayKernelManager.cull_intervalInt
	Default: 300

The interval (in seconds) on which to check for idle kernels exceeding the cull timeout value.



	GatewayKernelManager.default_kernel_nameUnicode
	Default: 'python3'

The name of the default kernel to start



	GatewayKernelManager.kernel_info_timeoutFloat
	Default: 60


	Timeout for giving up on a kernel (in seconds).
	On starting and restarting kernels, we check whether the
kernel is running and responsive by sending kernel_info_requests.
This sets the timeout in seconds for how long the kernel can take
before being presumed dead.
This affects the MappingKernelManager (which handles kernel restarts)
and the ZMQChannelsHandler (which handles the startup).







	GatewayKernelManager.kernel_manager_classDottedObjectName
	Default: 'jupyter_client.ioloop.AsyncIOLoopKernelManager'


	The kernel manager class.  This is configurable to allow
	subclassing of the AsyncKernelManager for customized behavior.







	GatewayKernelManager.root_dirUnicode
	Default: ''

No description



	GatewayKernelManager.shared_contextBool
	Default: True

Share a single zmq.Context to talk to all my kernels



	GatewayKernelSpecManager.allowed_kernelspecsSet
	Default: set()

List of allowed kernel names.


By default, all installed kernels are allowed.






	GatewayKernelSpecManager.ensure_native_kernelBool
	Default: True


	If there is no Python kernelspec registered and the IPython
	kernel is available, ensure it is added to the spec list.







	GatewayKernelSpecManager.kernel_spec_classType
	Default: 'jupyter_client.kernelspec.KernelSpec'


	The kernel spec class.  This is configurable to allow
	subclassing of the KernelSpecManager for customized behavior.







	GatewayKernelSpecManager.whitelistSet
	Default: set()

Deprecated, use KernelSpecManager.allowed_kernelspecs



	GatewayClient.auth_tokenUnicode
	Default: None

The authorization token used in the HTTP headers.  (JUPYTER_GATEWAY_AUTH_TOKEN env var)



	GatewayClient.ca_certsUnicode
	Default: None

The filename of CA certificates or None to use defaults.  (JUPYTER_GATEWAY_CA_CERTS env var)



	GatewayClient.client_certUnicode
	Default: None

The filename for client SSL certificate, if any.  (JUPYTER_GATEWAY_CLIENT_CERT env var)



	GatewayClient.client_keyUnicode
	Default: None

The filename for client SSL key, if any.  (JUPYTER_GATEWAY_CLIENT_KEY env var)



	GatewayClient.connect_timeoutFloat
	Default: 40.0


	The time allowed for HTTP connection establishment with the Gateway server.
	(JUPYTER_GATEWAY_CONNECT_TIMEOUT env var)







	GatewayClient.env_whitelistUnicode
	Default: ''


	A comma-separated list of environment variable names that will be included, along with
	their values, in the kernel startup request.  The corresponding env_whitelist configuration
value must also be set on the Gateway server - since that configuration value indicates which
environmental values to make available to the kernel. (JUPYTER_GATEWAY_ENV_WHITELIST env var)







	GatewayClient.gateway_retry_intervalFloat
	Default: 1.0


	The time allowed for HTTP reconnection with the Gateway server for the first time.
	Next will be JUPYTER_GATEWAY_RETRY_INTERVAL multiplied by two in factor of numbers of retries
but less than JUPYTER_GATEWAY_RETRY_INTERVAL_MAX.
(JUPYTER_GATEWAY_RETRY_INTERVAL env var)







	GatewayClient.gateway_retry_interval_maxFloat
	Default: 30.0


	The maximum time allowed for HTTP reconnection retry with the Gateway server.
	(JUPYTER_GATEWAY_RETRY_INTERVAL_MAX env var)







	GatewayClient.gateway_retry_maxInt
	Default: 5


	The maximum retries allowed for HTTP reconnection with the Gateway server.
	(JUPYTER_GATEWAY_RETRY_MAX env var)







	GatewayClient.headersUnicode
	Default: '{}'


	Additional HTTP headers to pass on the request.  This value will be converted to a dict.
	(JUPYTER_GATEWAY_HEADERS env var)







	GatewayClient.http_pwdUnicode
	Default: None

The password for HTTP authentication.  (JUPYTER_GATEWAY_HTTP_PWD env var)



	GatewayClient.http_userUnicode
	Default: None

The username for HTTP authentication. (JUPYTER_GATEWAY_HTTP_USER env var)



	GatewayClient.kernels_endpointUnicode
	Default: '/api/kernels'

The gateway API endpoint for accessing kernel resources (JUPYTER_GATEWAY_KERNELS_ENDPOINT env var)



	GatewayClient.kernelspecs_endpointUnicode
	Default: '/api/kernelspecs'

The gateway API endpoint for accessing kernelspecs (JUPYTER_GATEWAY_KERNELSPECS_ENDPOINT env var)



	GatewayClient.kernelspecs_resource_endpointUnicode
	Default: '/kernelspecs'


	The gateway endpoint for accessing kernelspecs resources
	(JUPYTER_GATEWAY_KERNELSPECS_RESOURCE_ENDPOINT env var)







	GatewayClient.request_timeoutFloat
	Default: 40.0

The time allowed for HTTP request completion. (JUPYTER_GATEWAY_REQUEST_TIMEOUT env var)



	GatewayClient.urlUnicode
	Default: None


	The url of the Kernel or Enterprise Gateway server where
	kernel specifications are defined and kernel management takes place.
If defined, this Notebook server acts as a proxy for all kernel
management and kernel specification retrieval.  (JUPYTER_GATEWAY_URL env var)







	GatewayClient.validate_certBool
	Default: True


	For HTTPS requests, determines if server’s certificate should be validated or not.
	(JUPYTER_GATEWAY_VALIDATE_CERT env var)







	GatewayClient.ws_urlUnicode
	Default: None


	The websocket url of the Kernel or Enterprise Gateway server.  If not provided, this value
	will correspond to the value of the Gateway url with ‘ws’ in place of ‘http’.  (JUPYTER_GATEWAY_WS_URL env var)







	TerminalManager.cull_inactive_timeoutInt
	Default: 0


	Timeout (in seconds) in which a terminal has been inactive and ready to be culled.
	Values of 0 or lower disable culling.







	TerminalManager.cull_intervalInt
	Default: 300

The interval (in seconds) on which to check for terminals exceeding the inactive timeout value.









            

          

      

      

    

  

    
      
          
            
  


Running a notebook server

The Jupyter notebook web application is based on a
server-client structure.  The notebook server uses a two-process kernel
architecture [https://ipython.readthedocs.io/en/stable/overview.html#ipythonzmq] based on ZeroMQ [http://zeromq.org], as well as Tornado [http://www.tornadoweb.org] for
serving HTTP requests.


Note

By default, a notebook server runs locally at 127.0.0.1:8888
and is accessible only from localhost. You may access the
notebook server from the browser using http://127.0.0.1:8888.



This document describes how you can
secure a notebook server and how to
run it on a public interface.


Important

This is not the multi-user server you are looking for. This document
describes how you can run a public server with a single user. This should
only be done by someone who wants remote access to their personal machine.
Even so, doing this requires a thorough understanding of the set-ups
limitations and security implications. If you allow multiple users to
access a notebook server as it is described in this document, their
commands may collide, clobber and overwrite each other.

If you want a multi-user server, the official solution is  JupyterHub [https://jupyterhub.readthedocs.io/en/latest/].
To use JupyterHub, you need a Unix server (typically Linux) running
somewhere that is accessible to your users on a network. This may run over
the public internet, but doing so introduces additional
security concerns [https://jupyterhub.readthedocs.io/en/latest/getting-started/security-basics.html].




Securing a notebook server

You can protect your notebook server with a simple single password. As of notebook
5.0 this can be done automatically. To set up a password manually you can configure the
NotebookApp.password setting in jupyter_notebook_config.py.


Prerequisite: A notebook configuration file

Check to see if you have a notebook configuration file,
jupyter_notebook_config.py. The default location for this file
is your Jupyter folder located in your home directory:



	Windows: C:\Users\USERNAME\.jupyter\jupyter_notebook_config.py


	OS X: /Users/USERNAME/.jupyter/jupyter_notebook_config.py


	Linux: /home/USERNAME/.jupyter/jupyter_notebook_config.py







If you don’t already have a Jupyter folder, or if your Jupyter folder doesn’t contain
a notebook configuration file, run the following command:

$ jupyter notebook --generate-config





This command will create the Jupyter folder if necessary, and create notebook
configuration file, jupyter_notebook_config.py, in this folder.



Automatic Password setup

As of notebook 5.3, the first time you log-in using a token, the notebook server
should give you the opportunity to setup a password from the user interface.

You will be presented with a form asking for the current _token_, as well as
your _new_ _password_ ; enter both and click on Login and setup new password.

Next time you need to log in you’ll be able to use the new password instead of
the login token, otherwise follow the procedure to set a password from the
command line.

The ability to change the password at first login time may be disabled by
integrations by setting the --NotebookApp.allow_password_change=False

Starting at notebook version 5.0, you can enter and store a password for your
notebook server with a single command. jupyter notebook password will
prompt you for your password and record the hashed password in your
jupyter_notebook_config.json.

$ jupyter notebook password
Enter password:  ****
Verify password: ****
[NotebookPasswordApp] Wrote hashed password to /Users/you/.jupyter/jupyter_notebook_config.json





This can be used to reset a lost password; or if you believe your credentials
have been leaked and desire to change your password. Changing your password will
invalidate all logged-in sessions after a server restart.



Preparing a hashed password

You can prepare a hashed password manually, using the function
notebook.auth.security.passwd():

In [1]: from notebook.auth import passwd
In [2]: passwd()
Enter password:
Verify password:
Out[2]: 'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'






Caution

passwd() when called with no arguments
will prompt you to enter and verify your password such as
in the above code snippet. Although the function can also
be passed a string as an argument such as passwd('mypassword'), please
do not pass a string as an argument inside an IPython session, as it
will be saved in your input history.





Adding hashed password to your notebook configuration file

You can then add the hashed password to your
jupyter_notebook_config.py. The default location for this file
jupyter_notebook_config.py is in your Jupyter folder in your home
directory, ~/.jupyter, e.g.:

c.NotebookApp.password = u'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'





Automatic password setup will store the hash in jupyter_notebook_config.json
while this method stores the hash in jupyter_notebook_config.py. The .json
configuration options take precedence over the .py one, thus the manual
password may not take effect if the Json file has a password set.



Using SSL for encrypted communication

When using a password, it is a good idea to also use SSL with a web
certificate, so that your hashed password is not sent unencrypted by your
browser.


Important

Web security is rapidly changing and evolving. We provide this document
as a convenience to the user, and recommend that the user keep current on
changes that may impact security, such as new releases of OpenSSL.
The Open Web Application Security Project (OWASP [https://www.owasp.org]) website is a good resource
on general security issues and web practices.



You can start the notebook to communicate via a secure protocol mode by setting
the certfile option to your self-signed certificate, i.e. mycert.pem,
with the command:

$ jupyter notebook --certfile=mycert.pem --keyfile mykey.key






Tip

A self-signed certificate can be generated with openssl.  For example,
the following command will create a certificate valid for 365 days with
both the key and certificate data written to the same file:

$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout mykey.key -out mycert.pem







When starting the notebook server, your browser may warn that your self-signed
certificate is insecure or unrecognized.  If you wish to have a fully
compliant self-signed certificate that will not raise warnings, it is possible
(but rather involved) to create one, as explained in detail in this
tutorial [https://arstechnica.com/information-technology/2009/12/how-to-get-set-with-a-secure-sertificate-for-free/]. Alternatively, you may use Let’s Encrypt [https://letsencrypt.org] to acquire a free SSL
certificate and follow the steps in Using Let’s Encrypt to set up a
public server.




Running a public notebook server

If you want to access your notebook server remotely via a web browser,
you can do so by running a public notebook server. For optimal security
when running a public notebook server, you should first secure the
server with a password and SSL/HTTPS as described in
Securing a notebook server.

Start by creating a certificate file and a hashed password, as explained in
Securing a notebook server.

If you don’t already have one, create a
config file for the notebook using the following command line:

$ jupyter notebook --generate-config





In the ~/.jupyter directory, edit the notebook config file,
jupyter_notebook_config.py.  By default, the notebook config file has
all fields commented out. The minimum set of configuration options that
you should uncomment and edit in jupyter_notebook_config.py is the
following:

# Set options for certfile, ip, password, and toggle off
# browser auto-opening
c.NotebookApp.certfile = u'/absolute/path/to/your/certificate/mycert.pem'
c.NotebookApp.keyfile = u'/absolute/path/to/your/certificate/mykey.key'
# Set ip to '*' to bind on all interfaces (ips) for the public server
c.NotebookApp.ip = '*'
c.NotebookApp.password = u'sha1:bcd259ccf...<your hashed password here>'
c.NotebookApp.open_browser = False

# It is a good idea to set a known, fixed port for server access
c.NotebookApp.port = 9999





You can then start the notebook using the jupyter notebook command.


Using Let’s Encrypt

Let’s Encrypt [https://letsencrypt.org] provides free SSL/TLS certificates. You can also set up a
public server using a Let’s Encrypt [https://letsencrypt.org] certificate.

Running a public notebook server will be similar when using a Let’s Encrypt
certificate with a few configuration changes. Here are the steps:


	Create a Let’s Encrypt certificate [https://letsencrypt.org/getting-started/].


	Use Preparing a hashed password to create one.


	If you don’t already have config file for the notebook, create one
using the following command:

$ jupyter notebook --generate-config









4. In the ~/.jupyter directory, edit the notebook config file,
jupyter_notebook_config.py.  By default, the notebook config file has
all fields commented out. The minimum set of configuration options that
you should to uncomment and edit in jupyter_notebook_config.py is the
following:

# Set options for certfile, ip, password, and toggle off
# browser auto-opening
c.NotebookApp.certfile = u'/absolute/path/to/your/certificate/fullchain.pem'
c.NotebookApp.keyfile = u'/absolute/path/to/your/certificate/privkey.pem'
# Set ip to '*' to bind on all interfaces (ips) for the public server
c.NotebookApp.ip = '*'
c.NotebookApp.password = u'sha1:bcd259ccf...<your hashed password here>'
c.NotebookApp.open_browser = False

# It is a good idea to set a known, fixed port for server access
c.NotebookApp.port = 9999





You can then start the notebook using the jupyter notebook command.


Important

Use ‘https’.
Keep in mind that when you enable SSL support, you must access the
notebook server over https://, not over plain http://.  The startup
message from the server prints a reminder in the console, but it is easy
to overlook this detail and think the server is for some reason
non-responsive.

When using SSL, always access the notebook server with ‘https://’.



You may now access the public server by pointing your browser to
https://your.host.com:9999 where your.host.com is your public server’s
domain.



Firewall Setup

To function correctly, the firewall on the computer running the jupyter
notebook server must be configured to allow connections from client
machines on the access port c.NotebookApp.port set in
jupyter_notebook_config.py to allow connections to the
web interface.  The firewall must also allow connections from
127.0.0.1 (localhost) on ports from 49152 to 65535.
These ports are used by the server to communicate with the notebook kernels.
The kernel communication ports are chosen randomly by ZeroMQ, and may require
multiple connections per kernel, so a large range of ports must be accessible.




Running the notebook with a customized URL prefix

The notebook dashboard, which is the landing page with an overview
of the notebooks in your working directory, is typically found and accessed
at the default URL http://localhost:8888/.

If you prefer to customize the URL prefix for the notebook dashboard, you can
do so through modifying jupyter_notebook_config.py. For example, if you
prefer that the notebook dashboard be located with a sub-directory that
contains other ipython files, e.g. http://localhost:8888/ipython/,
you can do so with configuration options like the following (see above for
instructions about modifying jupyter_notebook_config.py):

c.NotebookApp.base_url = '/ipython/'







Embedding the notebook in another website

Sometimes you may want to embed the notebook somewhere on your website,
e.g. in an IFrame. To do this, you may need to override the
Content-Security-Policy to allow embedding. Assuming your website is at
https://mywebsite.example.com, you can embed the notebook on your website
with the following configuration setting in
jupyter_notebook_config.py:

c.NotebookApp.tornado_settings = {
    'headers': {
        'Content-Security-Policy': "frame-ancestors https://mywebsite.example.com 'self' "
    }
}





When embedding the notebook in a website using an iframe,
consider putting the notebook in single-tab mode.
Since the notebook opens some links in new tabs by default,
single-tab mode keeps the notebook from opening additional tabs.
Adding the following to ~/.jupyter/custom/custom.js will enable
single-tab mode:

define(['base/js/namespace'], function(Jupyter){
    Jupyter._target = '_self';
});







Using a gateway server for kernel management

You are now able to redirect the management of your kernels to a Gateway Server
(i.e., Jupyter Kernel Gateway [https://jupyter-kernel-gateway.readthedocs.io/en/latest/] or
Jupyter Enterprise Gateway [https://jupyter-enterprise-gateway.readthedocs.io/en/latest/])
simply by specifying a Gateway url via the following command-line option:


$ jupyter notebook --gateway-url=http://my-gateway-server:8888








the environment:


JUPYTER_GATEWAY_URL=http://my-gateway-server:8888








or in jupyter_notebook_config.py:


c.GatewayClient.url = http://my-gateway-server:8888








When provided, all kernel specifications will be retrieved from the specified Gateway server and all
kernels will be managed by that server.  This option enables the ability to target kernel processes
against managed clusters while allowing for the notebook’s management to remain local to the Notebook
server.



Known issues


Proxies

When behind a proxy, especially if your system or browser is set to autodetect
the proxy, the notebook web application might fail to connect to the server’s
websockets, and present you with a warning at startup. In this case, you need
to configure your system not to use the proxy for the server’s address.

For example, in Firefox, go to the Preferences panel, Advanced section,
Network tab, click ‘Settings…’, and add the address of the notebook server
to the ‘No proxy for’ field.



Content-Security-Policy (CSP)

Certain security guidelines [https://infosec.mozilla.org/guidelines/web_security.html#content-security-policy]
recommend that servers use a Content-Security-Policy (CSP) header to prevent
cross-site scripting vulnerabilities, specifically limiting to default-src:
https: when possible.  This directive causes two problems with Jupyter.
First, it disables execution of inline javascript code, which is used
extensively by Jupyter.  Second, it limits communication to the https scheme,
and prevents WebSockets from working because they communicate via the wss
scheme (or ws for insecure communication).  Jupyter uses WebSockets for
interacting with kernels, so when you visit a server with such a CSP, your
browser will block attempts to use wss, which will cause you to see
“Connection failed” messages from jupyter notebooks, or simply no response
from jupyter terminals.  By looking in your browser’s javascript console, you
can see any error messages that will explain what is failing.

To avoid these problem, you need to add 'unsafe-inline' and connect-src
https: wss: to your CSP header, at least for pages served by jupyter.  (That
is, you can leave your CSP unchanged for other parts of your website.)  Note
that multiple CSP headers are allowed, but successive CSP headers can only
restrict the policy; they cannot loosen it.  For example, if your server sends
both of these headers


Content-Security-Policy “default-src https: ‘unsafe-inline’”
Content-Security-Policy “connect-src https: wss:”




the first policy will already eliminate wss connections, so the second has no
effect.  Therefore, you can’t simply add the second header; you have to
actually modify your CSP header to look more like this:


Content-Security-Policy “default-src https: ‘unsafe-inline’; connect-src https: wss:”






Docker CMD

Using jupyter notebook as a
Docker CMD [https://docs.docker.com/engine/reference/builder/#cmd] results in
kernels repeatedly crashing, likely due to a lack of PID reaping [https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/].
To avoid this, use the tini [https://github.com/krallin/tini] init as your
Dockerfile ENTRYPOINT:

# Add Tini. Tini operates as a process subreaper for jupyter. This prevents
# kernel crashes.
ENV TINI_VERSION v0.6.0
ADD https://github.com/krallin/tini/releases/download/${TINI_VERSION}/tini /usr/bin/tini
RUN chmod +x /usr/bin/tini
ENTRYPOINT ["/usr/bin/tini", "--"]

EXPOSE 8888
CMD ["jupyter", "notebook", "--port=8888", "--no-browser", "--ip=0.0.0.0"]










            

          

      

      

    

  

    
      
          
            
  


Security in the Jupyter notebook server

Since access to the Jupyter notebook server means access to running arbitrary code,
it is important to restrict access to the notebook server.
For this reason, notebook 4.3 introduces token-based authentication that is on by default.


Note

If you enable a password for your notebook server,
token authentication is not enabled by default,
and the behavior of the notebook server is unchanged from versions earlier than 4.3.



When token authentication is enabled, the notebook uses a token to authenticate requests.
This token can be provided to login to the notebook server in three ways:


	in the Authorization header, e.g.:

Authorization: token abcdef...







	In a URL parameter, e.g.:

https://my-notebook/tree/?token=abcdef...







	In the password field of the login form that will be shown to you if you are not logged in.




When you start a notebook server with token authentication enabled (default),
a token is generated to use for authentication.
This token is logged to the terminal, so that you can copy/paste the URL into your browser:

[I 11:59:16.597 NotebookApp] The Jupyter Notebook is running at:
http://localhost:8888/?token=c8de56fa4deed24899803e93c227592aef6538f93025fe01





If the notebook server is going to open your browser automatically
(the default, unless --no-browser has been passed),
an additional token is generated for launching the browser.
This additional token can be used only once,
and is used to set a cookie for your browser once it connects.
After your browser has made its first request with this one-time-token,
the token is discarded and a cookie is set in your browser.

At any later time, you can see the tokens and URLs for all of your running servers with jupyter notebook list:

$ jupyter notebook list
Currently running servers:
http://localhost:8888/?token=abc... :: /home/you/notebooks
https://0.0.0.0:9999/?token=123... :: /tmp/public
http://localhost:8889/ :: /tmp/has-password





For servers with token-authentication enabled, the URL in the above listing will include the token,
so you can copy and paste that URL into your browser to login.
If a server has no token (e.g. it has a password or has authentication disabled),
the URL will not include the token argument.
Once you have visited this URL,
a cookie will be set in your browser and you won’t need to use the token again,
unless you switch browsers, clear your cookies, or start a notebook server on a new port.


Alternatives to token authentication

If a generated token doesn’t work well for you,
you can set a password for your notebook.
jupyter notebook password will prompt you for a password,
and store the hashed password in your jupyter_notebook_config.json.


New in version 5.0: jupyter notebook password command is added.



It is possible to disable authentication altogether by setting the token and password to empty strings,
but this is NOT RECOMMENDED, unless authentication or access restrictions are handled at a different layer in your web application:

c.NotebookApp.token = ''
c.NotebookApp.password = ''








Security in notebook documents

As Jupyter notebooks become more popular for sharing and collaboration,
the potential for malicious people to attempt to exploit the notebook
for their nefarious purposes increases. IPython 2.0 introduced a
security model to prevent execution of untrusted code without explicit
user input.


The problem

The whole point of Jupyter is arbitrary code execution. We have no
desire to limit what can be done with a notebook, which would negatively
impact its utility.

Unlike other programs, a Jupyter notebook document includes output.
Unlike other documents, that output exists in a context that can execute
code (via Javascript).

The security problem we need to solve is that no code should execute
just because a user has opened a notebook that they did not
write. Like any other program, once a user decides to execute code in
a notebook, it is considered trusted, and should be allowed to do
anything.



Our security model


	Untrusted HTML is always sanitized


	Untrusted Javascript is never executed


	HTML and Javascript in Markdown cells are never trusted


	Outputs generated by the user are trusted


	Any other HTML or Javascript (in Markdown cells, output generated by
others) is never trusted


	The central question of trust is “Did the current user do this?”






The details of trust

When a notebook is executed and saved, a signature is computed from a
digest of the notebook’s contents plus a secret key. This is stored in a
database, writable only by the current user. By default, this is located at:

~/.local/share/jupyter/nbsignatures.db  # Linux
~/Library/Jupyter/nbsignatures.db       # OS X
%APPDATA%/jupyter/nbsignatures.db       # Windows





Each signature represents a series of outputs which were produced by code the
current user executed, and are therefore trusted.

When you open a notebook, the server computes its signature, and checks if it’s
in the database. If a match is found, HTML and Javascript
output in the notebook will be trusted at load, otherwise it will be
untrusted.

Any output generated during an interactive session is trusted.


Updating trust

A notebook’s trust is updated when the notebook is saved. If there are
any untrusted outputs still in the notebook, the notebook will not be
trusted, and no signature will be stored. If all untrusted outputs have
been removed (either via Clear Output or re-execution), then the
notebook will become trusted.

While trust is updated per output, this is only for the duration of a
single session. A newly loaded notebook file is either trusted or not in its
entirety.



Explicit trust

Sometimes re-executing a notebook to generate trusted output is not an
option, either because dependencies are unavailable, or it would take a
long time. Users can explicitly trust a notebook in two ways:


	At the command-line, with:

jupyter trust /path/to/notebook.ipynb







	After loading the untrusted notebook, with File / Trust Notebook




These two methods simply load the notebook, compute a new signature, and add
that signature to the user’s database.




Reporting security issues

If you find a security vulnerability in Jupyter, either a failure of the
code to properly implement the model described here, or a failure of the
model itself, please report it to security@ipython.org.

If you prefer to encrypt your security reports,
you can use this PGP public key.



Affected use cases

Some use cases that work in Jupyter 1.0 became less convenient in
2.0 as a result of the security changes. We do our best to minimize
these annoyances, but security is always at odds with convenience.


Javascript and CSS in Markdown cells

While never officially supported, it had become common practice to put
hidden Javascript or CSS styling in Markdown cells, so that they would
not be visible on the page. Since Markdown cells are now sanitized (by
Google Caja [https://developers.google.com/caja]), all Javascript
(including click event handlers, etc.) and CSS will be stripped.

We plan to provide a mechanism for notebook themes, but in the meantime
styling the notebook can only be done via either custom.css or CSS
in HTML output. The latter only have an effect if the notebook is
trusted, because otherwise the output will be sanitized just like
Markdown.



Collaboration

When collaborating on a notebook, people probably want to see the
outputs produced by their colleagues’ most recent executions. Since each
collaborator’s key will differ, this will result in each share starting
in an untrusted state. There are three basic approaches to this:


	re-run notebooks when you get them (not always viable)


	explicitly trust notebooks via jupyter trust or the notebook menu
(annoying, but easy)


	share a notebook signatures database, and use configuration dedicated to the
collaboration while working on the project.




To share a signatures database among users, you can configure:

c.NotebookNotary.data_dir = "/path/to/signature_dir"





to specify a non-default path to the SQLite database (of notebook hashes,
essentially). We are aware that SQLite doesn’t work well on NFS and we are
working out better ways to do this [https://github.com/jupyter/notebook/issues/1782].






            

          

      

      

    

  

    
      
          
            
  


Configuring the notebook frontend


Note

The ability to configure the notebook frontend UI and preferences is
still a work in progress.



This document is a rough explanation on how you can persist some configuration
options for the notebook JavaScript.

There is no exhaustive list of all the configuration options as most options
are passed down to other libraries, which means that non valid
configuration can be ignored without any error messages.


How front end configuration works

The frontend configuration system works as follows:



	get a handle of a configurable JavaScript object.


	access its configuration attribute.


	update its configuration attribute with a JSON patch.









Example - Changing the notebook’s default indentation

This example explains how to change the default setting indentUnit
for CodeMirror Code Cells:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {
      CodeCell:{
        cm_config:{indentUnit:2}
      }
    }
config.update(patch)





You can enter the previous snippet in your browser’s JavaScript console once.
Then reload the notebook page in your browser. Now, the preferred indent unit
should be equal to two spaces. The custom setting persists and you do not need
to reissue the patch on new notebooks.

indentUnit, used in this example, is one of the many CodeMirror options [https://codemirror.net/doc/manual.html#option_indentUnit] which are available
for configuration.

You can similarly change the options of the file editor by entering the following
snippet in the browser’s Javascript console once (from a file editing page).:

var config = Jupyter.editor.config
var patch = {
      Editor: {
        codemirror_options: {
          indentUnit: 2
        }
      }
    }
config.update(patch)







Example - Restoring the notebook’s default indentation

If you want to restore a notebook frontend preference to its default value,
you will enter a JSON patch with a null value for the preference setting.

For example, let’s restore the indent setting indentUnit to its default of
four spaces. Enter the following code snippet in your JavaScript console:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {
      CodeCell:{
        cm_config:{indentUnit: null} // only change here.
      }
    }
config.update(patch)





Reload the notebook in your browser and the default indent should again be two
spaces.



Persisting configuration settings

Under the hood, Jupyter will persist the preferred configuration settings in
~/.jupyter/nbconfig/<section>.json, with <section>
taking various value depending on the page where the configuration is issued.
<section> can take various values like notebook, tree, and
editor. A common section contains configuration settings shared by all
pages.





            

          

      

      

    

  

    
      
          
            
  


Extending the Notebook

Certain subsystems of the notebook server are designed to be extended or
overridden by users. These documents explain these systems, and show how to
override the notebook’s defaults with your own custom behavior.



	Contents API
	Data Model

	Writing a Custom ContentsManager

	Customizing Checkpoints

	Testing





	File save hooks
	Examples





	Custom request handlers
	Writing a notebook server extension

	Registering custom handlers





	Extra Parameters and authentication

	Custom front-end extensions
	The structure of a front-end extension

	Modifying key bindings

	Defining and registering your own actions

	Installing and enabling extensions

	Kernel Specific extensions





	Customize keymaps

	Custom bundler extensions
	Declaring bundler metadata

	Writing the bundle function

	Enabling/disabling bundler extensions

	Example: IPython Notebook bundle (.zip)

	Bundler invocation details












            

          

      

      

    

  

    
      
          
            
  


Contents API

The Jupyter Notebook web application provides a graphical interface for
creating, opening, renaming, and deleting files in a virtual filesystem.

The ContentsManager class defines an abstract
API for translating these interactions into operations on a particular storage
medium. The default implementation,
FileContentsManager, uses the local
filesystem of the server for storage and straightforwardly serializes notebooks
into JSON.  Users can override these behaviors by supplying custom subclasses
of ContentsManager.

This section describes the interface implemented by ContentsManager subclasses.
We refer to this interface as the Contents API.


Data Model


Filesystem Entities

ContentsManager methods represent virtual filesystem entities as dictionaries,
which we refer to as models.

Models may contain the following entries:








	Key

	Type

	Info





	name

	unicode

	Basename of the entity.



	path

	unicode

	Full
(API-style)
path to the entity.



	type

	unicode

	The entity type. One of
"notebook", "file" or
"directory".



	created

	datetime

	Creation date of the entity.



	last_modified

	datetime

	Last modified date of the
entity.



	content

	variable

	The “content” of the entity.
(See
Below)



	mimetype

	unicode or
None

	The mimetype of content,
if any.  (See
Below)



	format

	unicode or
None

	The format of content,
if any. (See
Below)






Certain model fields vary in structure depending on the type field of the
model. There are three model types: notebook, file, and directory.


	
	notebook models
	
	The format field is always "json".


	The mimetype field is always None.


	The content field contains a
nbformat.notebooknode.NotebookNode representing the .ipynb file
represented by the model.  See the NBFormat [https://nbformat.readthedocs.io/en/latest/index.html] documentation for a full
description.










	
	file models
	
	The format field is either "text" or "base64".


	The mimetype field can be any mimetype string, but defaults to
text/plain for text-format models and
application/octet-stream for base64-format models. For files with
unknown mime types (e.g. unknown file extensions), this field may be
None.


	The content field is always of type unicode.  For text-format
file models, content simply contains the file’s bytes after decoding
as UTF-8.  Non-text (base64) files are read as bytes, base64 encoded,
and then decoded as UTF-8.










	
	directory models
	
	The format field is always "json".


	The mimetype field is always None.


	The content field contains a list of content-free
models representing the entities in the directory.













Note

In certain circumstances, we don’t need the full content of an entity to
complete a Contents API request. In such cases, we omit the content, and
format keys from the model. The default values for the mimetype
field will might also not be evaluated, in which case it will be set as None.
This reduced reply most commonly occurs when listing a directory, in
which circumstance we represent files within the directory as content-less
models to avoid having to recursively traverse and serialize the entire
filesystem.



Sample Models

# Notebook Model with Content
{
    'content': {
        'metadata': {},
        'nbformat': 4,
        'nbformat_minor': 0,
        'cells': [
            {
                'cell_type': 'markdown',
                'metadata': {},
                'source': 'Some **Markdown**',
            },
        ],
    },
    'created': datetime(2015, 7, 25, 19, 50, 19, 19865),
    'format': 'json',
    'last_modified': datetime(2015, 7, 25, 19, 50, 19, 19865),
    'mimetype': None,
    'name': 'a.ipynb',
    'path': 'foo/a.ipynb',
    'type': 'notebook',
    'writable': True,
}

# Notebook Model without Content
{
    'content': None,
    'created': datetime.datetime(2015, 7, 25, 20, 17, 33, 271931),
    'format': None,
    'last_modified': datetime.datetime(2015, 7, 25, 20, 17, 33, 271931),
    'mimetype': None,
    'name': 'a.ipynb',
    'path': 'foo/a.ipynb',
    'type': 'notebook',
    'writable': True
}







API Paths

ContentsManager methods represent the locations of filesystem resources as
API-style paths.  Such paths are interpreted as relative to the root
directory of the notebook server.  For compatibility across systems, the
following guarantees are made:


	Paths are always unicode, not bytes.


	Paths are not URL-escaped.


	Paths are always forward-slash (/) delimited, even on Windows.


	Leading and trailing slashes are stripped.  For example, /foo/bar/buzz/
becomes foo/bar/buzz.


	The empty string ("") represents the root directory.







Writing a Custom ContentsManager

The default ContentsManager is designed for users running the notebook as an
application on a personal computer.  It stores notebooks as .ipynb files on the
local filesystem, and it maps files and directories in the Notebook UI to files
and directories on disk.  It is possible to override how notebooks are stored
by implementing your own custom subclass of ContentsManager. For example,
if you deploy the notebook in a context where you don’t trust or don’t have
access to the filesystem of the notebook server, it’s possible to write your
own ContentsManager that stores notebooks and files in a database.


Required Methods

A minimal complete implementation of a custom
ContentsManager must implement the following
methods:







	ContentsManager.get(path[, content, type, ...])

	Get a file or directory model.



	ContentsManager.save(model, path)

	Save a file or directory model to path.



	ContentsManager.delete_file(path)

	Delete the file or directory at path.



	ContentsManager.rename_file(old_path, new_path)

	Rename a file or directory.



	ContentsManager.file_exists([path])

	Does a file exist at the given path?



	ContentsManager.dir_exists(path)

	Does a directory exist at the given path?



	ContentsManager.is_hidden(path)

	Is path a hidden directory or file?






You may be required to specify a Checkpoints object, as the default one,
FileCheckpoints, could be incompatible with your custom
ContentsManager.



Chunked Saving

The contents API allows for “chunked” saving of files, i.e.
saving/transmitting in partial pieces:


	This can only be used when the type of the model is file.


	The model should be as otherwise expected for
save(), with an added field chunk.


	The value of chunk should be an integer starting at 1, and incrementing
for each subsequent chunk, except for the final chunk, which should be
indicated with a value of -1.


	The model returned from using save() with
chunk should be treated as unreliable for all chunks except the final one.


	Any interaction with a file being saved in a chunked manner is unreliable
until the final chunk has been saved. This includes directory listings.







Customizing Checkpoints

Customized Checkpoint definitions allows behavior to be
altered and extended.

The Checkpoints and GenericCheckpointsMixin classes
(from notebook.services.contents.checkpoints)
have reusable code and are intended to be used together,
but require the following methods to be implemented.







	Checkpoints.rename_checkpoint(checkpoint_id, ...)

	Rename a single checkpoint from old_path to new_path.



	Checkpoints.list_checkpoints(path)

	Return a list of checkpoints for a given file



	Checkpoints.delete_checkpoint(checkpoint_id, ...)

	delete a checkpoint for a file



	GenericCheckpointsMixin.create_file_checkpoint(...)

	Create a checkpoint of the current state of a file



	GenericCheckpointsMixin.create_notebook_checkpoint(nb, ...)

	Create a checkpoint of the current state of a file



	GenericCheckpointsMixin.get_file_checkpoint(...)

	Get the content of a checkpoint for a non-notebook file.



	GenericCheckpointsMixin.get_notebook_checkpoint(...)

	Get the content of a checkpoint for a notebook.







No-op example

Here is an example of a no-op checkpoints object - note the mixin
comes first. The docstrings indicate what each method should do or
return for a more complete implementation.

class NoOpCheckpoints(GenericCheckpointsMixin, Checkpoints):
    """requires the following methods:"""
    def create_file_checkpoint(self, content, format, path):
        """ -> checkpoint model"""
    def create_notebook_checkpoint(self, nb, path):
        """ -> checkpoint model"""
    def get_file_checkpoint(self, checkpoint_id, path):
        """ -> {'type': 'file', 'content': <str>, 'format': {'text', 'base64'}}"""
    def get_notebook_checkpoint(self, checkpoint_id, path):
        """ -> {'type': 'notebook', 'content': <output of nbformat.read>}"""
    def delete_checkpoint(self, checkpoint_id, path):
        """deletes a checkpoint for a file"""
    def list_checkpoints(self, path):
        """returns a list of checkpoint models for a given file,
        default just does one per file
        """
        return []
    def rename_checkpoint(self, checkpoint_id, old_path, new_path):
        """renames checkpoint from old path to new path"""





See GenericFileCheckpoints in notebook.services.contents.filecheckpoints
for a more complete example.




Testing

notebook.services.contents.tests includes several test suites written
against the abstract Contents API.  This means that an excellent way to test a
new ContentsManager subclass is to subclass our tests to make them use your
ContentsManager.


Note

PGContents [https://github.com/quantopian/pgcontents] is an example of a complete implementation of a custom
ContentsManager.  It stores notebooks and files in PostgreSQL [https://www.postgresql.org/] and encodes
directories as SQL relations.  PGContents also provides an example of how to
re-use the notebook’s tests.







            

          

      

      

    

  

    
      
          
            
  


File save hooks

You can configure functions that are run whenever a file is saved. There are
two hooks available:


	ContentsManager.pre_save_hook runs on the API path and model with
content. This can be used for things like stripping output that people don’t
like adding to VCS noise.


	FileContentsManager.post_save_hook runs on the filesystem path and model
without content. This could be used to commit changes after every save, for
instance.




They are both called with keyword arguments:

pre_save_hook(model=model, path=path, contents_manager=cm)
post_save_hook(model=model, os_path=os_path, contents_manager=cm)






Examples

These can both be added to jupyter_notebook_config.py.

A pre-save hook for stripping output:

def scrub_output_pre_save(model, **kwargs):
    """scrub output before saving notebooks"""
    # only run on notebooks
    if model['type'] != 'notebook':
        return
    # only run on nbformat v4
    if model['content']['nbformat'] != 4:
        return

    for cell in model['content']['cells']:
        if cell['cell_type'] != 'code':
            continue
        cell['outputs'] = []
        cell['execution_count'] = None

c.FileContentsManager.pre_save_hook = scrub_output_pre_save





A post-save hook to make a script equivalent whenever the notebook is saved
(replacing the --script option in older versions of the notebook):

import io
import os
from notebook.utils import to_api_path

_script_exporter = None

def script_post_save(model, os_path, contents_manager, **kwargs):
    """convert notebooks to Python script after save with nbconvert

    replaces `jupyter notebook --script`
    """
    from nbconvert.exporters.script import ScriptExporter

    if model['type'] != 'notebook':
        return

    global _script_exporter

    if _script_exporter is None:
        _script_exporter = ScriptExporter(parent=contents_manager)

    log = contents_manager.log

    base, ext = os.path.splitext(os_path)
    script, resources = _script_exporter.from_filename(os_path)
    script_fname = base + resources.get('output_extension', '.txt')
    log.info("Saving script /%s", to_api_path(script_fname, contents_manager.root_dir))

    with io.open(script_fname, 'w', encoding='utf-8') as f:
        f.write(script)

c.FileContentsManager.post_save_hook = script_post_save





This could be a simple call to jupyter nbconvert --to script, but spawning
the subprocess every time is quite slow.





            

          

      

      

    

  

    
      
          
            
  


Custom request handlers

The notebook webserver can be interacted with using a well defined
RESTful
API [http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/notebook/master/notebook/services/api/api.yaml].
You can define custom RESTful API handlers in addition to the ones
provided by the notebook. As described below, to define a custom handler
you need to first write a notebook server extension. Then, in the
extension, you can register the custom handler.


Writing a notebook server extension

The notebook webserver is written in Python, hence your server extension
should be written in Python too. Server extensions, like IPython
extensions, are Python modules that define a specially named load
function, load_jupyter_server_extension. This function is called
when the extension is loaded.

def load_jupyter_server_extension(nb_server_app):
    """
    Called when the extension is loaded.

    Args:
        nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance.
    """
    pass





To get the notebook server to load your custom extension, you’ll need to
add it to the list of extensions to be loaded. You can do this using the
config system. NotebookApp.nbserver_extensions is a config variable
which is a dictionary of strings, each a Python module to be imported, mapping
to True to enable or False to disable each extension.
Because this variable is notebook config, you can set it two different
ways, using config files or via the command line.

For example, to get your extension to load via the command line add a
double dash before the variable name, and put the Python dictionary in
double quotes. If your package is “mypackage” and module is
“mymodule”, this would look like
jupyter notebook --NotebookApp.nbserver_extensions="{'mypackage.mymodule':True}"
.
Basically the string should be Python importable.

Alternatively, you can have your extension loaded regardless of the
command line args by setting the variable in the Jupyter config file.
The default location of the Jupyter config file is
~/.jupyter/jupyter_notebook_config.py (see Configuration Overview). Inside
the config file, you can use Python to set the variable. For example,
the following config does the same as the previous command line example.

c = get_config()
c.NotebookApp.nbserver_extensions = {
    'mypackage.mymodule': True,
}





Before continuing, it’s a good idea to verify that your extension is
being loaded. Use a print statement to print something unique. Launch
the notebook server and you should see your statement printed to the
console.



Registering custom handlers

Once you’ve defined a server extension, you can register custom handlers
because you have a handle to the Notebook server app instance
(nb_server_app above). However, you first need to define your custom
handler. To declare a custom handler, inherit from
notebook.base.handlers.IPythonHandler. The example below[1] is a
Hello World handler:

from notebook.base.handlers import IPythonHandler

class HelloWorldHandler(IPythonHandler):
    def get(self):
        self.finish('Hello, world!')





The Jupyter Notebook server use
Tornado [http://www.tornadoweb.org/en/stable/] as its web framework.
For more information on how to implement request handlers, refer to the
Tornado documentation on the
matter [http://www.tornadoweb.org/en/stable/web.html#request-handlers].

After defining the handler, you need to register the handler with the
Notebook server. See the following example:

web_app = nb_server_app.web_app
host_pattern = '.*$'
route_pattern = url_path_join(web_app.settings['base_url'], '/hello')
web_app.add_handlers(host_pattern, [(route_pattern, HelloWorldHandler)])





Putting this together with the extension code, the example looks like the
following:

from notebook.utils import url_path_join
from notebook.base.handlers import IPythonHandler

class HelloWorldHandler(IPythonHandler):
    def get(self):
        self.finish('Hello, world!')

def load_jupyter_server_extension(nb_server_app):
    """
    Called when the extension is loaded.

    Args:
        nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance.
    """
    web_app = nb_server_app.web_app
    host_pattern = '.*$'
    route_pattern = url_path_join(web_app.settings['base_url'], '/hello')
    web_app.add_handlers(host_pattern, [(route_pattern, HelloWorldHandler)])








Extra Parameters and authentication

Here is a quick rundown of what you need to know to pass extra parameters to the handler and enable authentication:



	extra arguments to the __init__ constructor are given in a dictionary after the  handler class in add_handlers:







class HelloWorldHandler(IPythonHandler):

    def __init__(self, *args, **kwargs):
        self.extra = kwargs.pop('extra')
        ...

def load_jupyter_server_extension(nb_server_app):

    ...

    web_app.add_handlers(host_pattern,
        [
           (route_pattern, HelloWorldHandler, {"extra": nb_server_app.extra})
        ])





All handler methods that require authentication _MUST_ be decorated with @tornado.web.authenticated:

from tornado import web

class HelloWorldHandler(IPythonHandler):

    ...

    @web.authenticated
    def  get(self, *args, **kwargs):
         ...

    @web.authenticated
    def  post(self, *args, **kwargs):
         ...





References:


	Peter Parente’s Mindtrove [https://mindtrove.info/4-ways-to-extend-jupyter-notebook/#nb-server-exts]







            

          

      

      

    

  

    
      
          
            
  


Custom front-end extensions

This describes the basic steps to write a JavaScript extension for the Jupyter
notebook front-end. This allows you to customize the behaviour of the various
pages like the dashboard, the notebook, or the text editor.


The structure of a front-end extension


Note

The notebook front-end and Javascript API are not stable, and are subject
to a lot of changes. Any extension written for the current notebook is
almost guaranteed to break in the next release.



A front-end extension is a JavaScript file that defines an AMD module [https://en.wikipedia.org/wiki/Asynchronous_module_definition]
which exposes at least a function called load_ipython_extension, which
takes no arguments. We will not get into the details of what each of these
terms consists of yet, but here is the minimal code needed for a working
extension:

// file my_extension/main.js

define(function(){

    function load_ipython_extension(){
        console.info('this is my first extension');
    }

    return {
        load_ipython_extension: load_ipython_extension
    };
});






Note

Although for historical reasons the function is called
load_ipython_extension, it does apply to the Jupyter notebook in
general, and will work regardless of the kernel in use.



If you are familiar with JavaScript, you can use this template to require any
Jupyter module and modify its configuration, or do anything else in client-side
Javascript. Your extension will be loaded at the right time during the notebook
page initialisation for you to set up a listener for the various events that
the page can trigger.

You might want access to the current instances of the various Jupyter notebook
components on the page, as opposed to the classes defined in the modules. The
current instances are exposed by a module named base/js/namespace. If you
plan on accessing instances on the page, you should require this module
rather than accessing the global variable Jupyter, which will be removed in
future. The following example demonstrates how to access the current notebook
instance:

// file my_extension/main.js

define([
    'base/js/namespace'
], function(
    Jupyter
) {
    function load_ipython_extension() {
        console.log(
            'This is the current notebook application instance:',
            Jupyter.notebook
        );
    }

    return {
        load_ipython_extension: load_ipython_extension
    };
});







Modifying key bindings

One of the abilities of extensions is to modify key bindings, although once
again this is an API which is not guaranteed to be stable. However, custom key
bindings are frequently requested, and are helpful to increase accessibility,
so in the following we show how to access them.

Here is an example of an extension that will unbind the shortcut 0,0 in
command mode, which normally restarts the kernel, and bind 0,0,0 in its
place:

// file my_extension/main.js

define([
    'base/js/namespace'
], function(
    Jupyter
) {

    function load_ipython_extension() {
        Jupyter.keyboard_manager.command_shortcuts.remove_shortcut('0,0');
        Jupyter.keyboard_manager.command_shortcuts.add_shortcut('0,0,0', 'jupyter-notebook:restart-kernel');
    }

    return {
        load_ipython_extension: load_ipython_extension
    };
});






Note

The standard keybindings might not work correctly on non-US keyboards.
Unfortunately, this is a limitation of browser implementations and the
status of keyboard event handling on the web in general. We appreciate your
feedback if you have issues binding keys, or have any ideas to help improve
the situation.



You can see that I have used the action name
jupyter-notebook:restart-kernel to bind the new shortcut. There is no API
yet to access the list of all available actions, though the following in the
JavaScript console of your browser on a notebook page should give you an idea
of what is available:

Object.keys(require('base/js/namespace').actions._actions);





In this example, we changed a keyboard shortcut in command mode; you
can also customize keyboard shortcuts in edit mode.
However, most of the keyboard shortcuts in edit mode are handled by CodeMirror,
which supports custom key bindings via a completely different API.



Defining and registering your own actions

As part of your front-end extension, you may wish to define actions, which can
be attached to toolbar buttons, or called from the command palette. Here is an
example of an extension that defines an (not very useful!) action to show an
alert, and adds a toolbar button using the full action name:

// file my_extension/main.js

define([
    'base/js/namespace'
], function(
    Jupyter
) {
    function load_ipython_extension() {

        var handler = function () {
            alert('this is an alert from my_extension!');
        };

        var action = {
            icon: 'fa-comment-o', // a font-awesome class used on buttons, etc
            help    : 'Show an alert',
            help_index : 'zz',
            handler : handler
        };
        var prefix = 'my_extension';
        var action_name = 'show-alert';

        var full_action_name = Jupyter.actions.register(action, action_name, prefix); // returns 'my_extension:show-alert'
        Jupyter.toolbar.add_buttons_group([full_action_name]);
    }

    return {
        load_ipython_extension: load_ipython_extension
    };
});





Every action needs a name, which, when joined with its prefix to make the full
action name, should be unique. Built-in actions, like the
jupyter-notebook:restart-kernel we bound in the earlier
Modifying key bindings example, use the prefix jupyter-notebook. For
actions defined in an extension, it makes sense to use the extension name as
the prefix. For the action name, the following guidelines should be considered:


	First pick a noun and a verb for the action. For example, if the action is
“restart kernel,” the verb is “restart” and the noun is “kernel”.


	Omit terms like “selected” and “active” by default, so “delete-cell”, rather
than “delete-selected-cell”. Only provide a scope like “-all-” if it is other
than the default “selected” or “active” scope.


	If an action has a secondary action, separate the secondary action with
“-and-”, so “restart-kernel-and-clear-output”.


	Use above/below or previous/next to indicate spatial and sequential
relationships.


	Don’t ever use before/after as they have a temporal connotation that is
confusing when used in a spatial context.


	For dialogs, use a verb that indicates what the dialog will accomplish, such
as “confirm-restart-kernel”.






Installing and enabling extensions

You can install your nbextension with the command:

jupyter nbextension install path/to/my_extension/ [--user|--sys-prefix]





The default installation is system-wide. You can use --user to do a
per-user installation, or --sys-prefix to install to Python’s prefix (e.g.
in a virtual or conda environment). Where my_extension is the directory
containing the Javascript files. This will copy it to a Jupyter data directory
(the exact location is platform dependent - see jupyter_path [https://jupyter.readthedocs.io/en/latest/use/jupyter-directories.html#jupyter-path]).

For development, you can use the --symlink flag to symlink your extension
rather than copying it, so there’s no need to reinstall after changes.

To use your extension, you’ll also need to enable it, which tells the
notebook interface to load it. You can do that with another command:

jupyter nbextension enable my_extension/main [--sys-prefix][--section='common']





The argument refers to the Javascript module containing your
load_ipython_extension function, which is my_extension/main.js in this
example. The --section='common' argument will affect all pages, by default
it will be loaded on the notebook view only.
There is a corresponding disable command to stop using an
extension without uninstalling it.


Changed in version 4.2: Added --sys-prefix argument





Kernel Specific extensions


Warning

This feature serves as a stopgap for kernel developers who need specific
JavaScript injected onto the page. The availability and API are subject to
change at anytime.



It is possible to load some JavaScript on the page on a per kernel basis. Be
aware that doing so will make the browser page reload without warning as
soon as the user switches the kernel without notice.

If you, a kernel developer, need a particular piece of JavaScript to be loaded
on a “per kernel” basis, such as:


	if you are developing a CodeMirror mode for your language


	if you need to enable some specific debugging options




your kernelspecs are allowed to contain a kernel.js file that defines
an AMD module. The AMD module should define an onload function that will be
called when the kernelspec loads, such as:


	when you load a notebook that uses your kernelspec


	change the active kernelspec of a notebook to your kernelspec.




Note that adding a kernel.js to your kernelspec will add an unexpected side
effect to changing a kernel in the notebook. As it is impossible to “unload”
JavaScript, any attempt to change the kernelspec again will save the current
notebook and reload the page without confirmations.

Here is an example of kernel.js:

define(function(){
  return {onload: function(){
    console.info('Kernel specific javascript loaded');

    // do more things here, like define a codemirror mode

  }}

});









            

          

      

      

    

  

    
      
          
            
  


Customize keymaps


Note

Declarative Custom Keymaps is a provisional feature with unstable API
which is not guaranteed to be kept in future versions of the notebook,
and can be removed or changed without warnings.



The notebook shortcuts that are defined by jupyter both in edit mode and
command mode are configurable in the frontend configuration file
~/.jupyter/nbconfig/notebook.json. The modification of keyboard
shortcuts suffers from several limitations, mainly that your Browser and OS
might prevent certain shortcuts from working correctly. If this is the case,
there is unfortunately not much that can be done. The second issue can arise
with keyboards that have a layout different than US English. Again, even if
we are aware of the issue, there is not much that can be done.

Shortcuts are also limited by the underlying library that handles code and
text editing: CodeMirror. If some keyboard shortcuts are conflicting, the
method described below might not work to create new keyboard shortcuts,
especially in the edit mode of the notebook.

The 4 sections of interest in ~/.jupyter/nbconfig/notebook.json are the
following:



	keys.command.unbind


	keys.edit.unbind


	keys.command.bind


	keys.edit.bind







The first two sections describe which default keyboard shortcuts not to
register at notebook startup time. These are mostly useful if you need to
unbind a default keyboard shortcut before binding it to a new
command.

The first two sections apply respectively to the command and edit
mode of the notebook. They take a list of shortcuts to unbind.

For example, to unbind the shortcut to split a cell at the position of the
cursor (Ctrl-Shift-Minus) use the following:

// file ~/.jupyter/nbconfig/notebook.json

{
  "keys": {
    "edit": {
      "unbind": [
        "Ctrl-Shift-Minus"
      ]
    },
  },
}





The last two sections describe which new keyboard shortcuts to register
at notebook startup time and which actions they trigger.

The last two sections apply respectively to the command and edit
mode of the notebook. They take a dictionary with shortcuts as keys and
commands name as value.

For example, to bind the shortcut G,G,G (Press G three time in a row) in
command mode to the command that restarts the kernel and runs all cells, use
the following:

// file ~/.jupyter/nbconfig/notebook.json

{
  "keys": {
    "command": {
        "bind": {
            "G,G,G":"jupyter-notebook:restart-kernel-and-run-all-cells"
        }
    }
  },
}





The name of the available commands can be find by hovering over the
right end of a row in the command palette.




            

          

      

      

    

  

    
      
          
            
  


Custom bundler extensions

The notebook server supports the writing of bundler extensions that
transform, package, and download/deploy notebook files. As a developer, you
need only write a single Python function to implement a bundler. The notebook
server automatically generates a File -> Download as or File -> Deploy as
menu item in the notebook front-end to trigger your bundler.

Here are some examples of what you can implement using bundler extensions:


	Convert a notebook file to a HTML document and publish it as a post on a
blog site


	Create a snapshot of the current notebook environment and bundle that
definition plus notebook into a zip download


	Deploy a notebook as a standalone, interactive dashboard [https://github.com/jupyter-incubator/dashboards_bundlers]




To implement a bundler extension, you must do all of the following:


	Declare bundler extension metadata in your Python package


	Write a bundle function that responds to bundle requests


	Instruct your users on how to enable/disable your bundler extension




The following sections describe these steps in detail.


Declaring bundler metadata

You must provide information about the bundler extension(s) your package
provides by implementing a _jupyter_bundlerextensions_paths function. This
function can reside anywhere in your package so long as it can be imported
when enabling the bundler extension. (See Enabling/disabling bundler extensions.)

# in mypackage.hello_bundler

def _jupyter_bundlerextension_paths():
    """Example "hello world" bundler extension"""
    return [{
        'name': 'hello_bundler',                    # unique bundler name
        'label': 'Hello Bundler',                   # human-readable menu item label
        'module_name': 'mypackage.hello_bundler',   # module containing bundle()
        'group': 'deploy'                           # group under 'deploy' or 'download' menu
    }]





Note that the return value is a list. By returning multiple dictionaries in
the list, you allow users to enable/disable sets of bundlers all at once.



Writing the bundle function

At runtime, a menu item with the given label appears either in the
File ->  Deploy as or File -> Download as menu depending on the group
value in your metadata. When a user clicks the menu item, a new browser tab
opens and notebook server invokes a bundle function in the module_name
specified in the metadata.

You must implement a bundle function that matches the signature of the
following example:

# in mypackage.hello_bundler

def bundle(handler, model):
    """Transform, convert, bundle, etc. the notebook referenced by the given
    model.

    Then issue a Tornado web response using the `handler` to redirect
    the user's browser, download a file, show a HTML page, etc. This function
    must finish the handler response before returning either explicitly or by
    raising an exception.

    Parameters
    ----------
    handler : tornado.web.RequestHandler
        Handler that serviced the bundle request
    model : dict
        Notebook model from the configured ContentManager
    """
    handler.finish('I bundled {}!'.format(model['path']))





Your bundle function is free to do whatever it wants with the request and
respond in any manner. For example, it may read additional query parameters
from the request, issue a redirect to another site, run a local process (e.g.,
nbconvert), make a HTTP request to another service, etc.

The caller of the bundle function is @tornado.gen.coroutine decorated and
wraps its call with torando.gen.maybe_future. This behavior means you may
handle the web request synchronously, as in the example above, or
asynchronously using @tornado.gen.coroutine and yield, as in the example
below.

from tornado import gen

@gen.coroutine
def bundle(handler, model):
  # simulate a long running IO op (e.g., deploying to a remote host)
  yield gen.sleep(10)

  # now respond
  handler.finish('I spent 10 seconds bundling {}!'.format(model['path']))





You should prefer the second, asynchronous approach when your bundle operation
is long-running and would otherwise block the notebook server main loop if
handled synchronously.

For more details about the data flow from menu item click to bundle function
invocation, see Bundler invocation details.



Enabling/disabling bundler extensions

The notebook server includes a command line interface (CLI) for enabling and
disabling bundler extensions.

You should document the basic commands for enabling and disabling your
bundler. One possible command for enabling the hello_bundler example is the
following:

jupyter bundlerextension enable --py mypackage.hello_bundler --sys-prefix





The above updates the notebook configuration file in the current
conda/virtualenv environment (–sys-prefix) with the metadata returned by
the mypackage.hellow_bundler._jupyter_bundlerextension_paths function.

The corresponding command to later disable the bundler extension is the
following:

jupyter bundlerextension disable --py mypackage.hello_bundler --sys-prefix





For more help using the bundlerextension subcommand, run the following.

jupyter bundlerextension --help





The output describes options for listing enabled bundlers, configuring
bundlers for single users, configuring bundlers system-wide, etc.



Example: IPython Notebook bundle (.zip)

The hello_bundler example in this documentation is simplistic in the name
of brevity. For more meaningful examples, see
notebook/bundler/zip_bundler.py and notebook/bundler/tarball_bundler.py.
You can enable them to try them like so:

jupyter bundlerextension enable --py notebook.bundler.zip_bundler --sys-prefix
jupyter bundlerextension enable --py notebook.bundler.tarball_bundler --sys-prefix







Bundler invocation details

Support for bundler extensions comes from Python modules in notebook/bundler
and JavaScript in notebook/static/notebook/js/menubar.js. The flow of data
between the various components proceeds roughly as follows:


	User opens a notebook document


	Notebook front-end JavaScript loads notebook configuration


	Bundler front-end JS creates menu items for all bundler extensions in the
config


	User clicks a bundler menu item


	JS click handler opens a new browser window/tab to
<notebook base_url>/bundle/<path/to/notebook>?bundler=<name> (i.e., a
HTTP GET request)


	Bundle handler validates the notebook path and bundler name


	Bundle handler delegates the request to the bundle function in the
bundler’s module_name


	bundle function finishes the HTTP request








            

          

      

      

    

  

    
      
          
            
  


Contributing to the Jupyter Notebook

If you’re reading this section, you’re probably interested in contributing to
Jupyter.  Welcome and thanks for your interest in contributing!

Please take a look at the Contributor documentation, familiarize yourself with
using the Jupyter Notebook, and introduce yourself on the mailing list and
share what area of the project you are interested in working on.


General Guidelines

For general documentation about contributing to Jupyter projects, see the
Project Jupyter Contributor Documentation [https://jupyter.readthedocs.io/en/latest/contributing/content-contributor.html].



Setting Up a Development Environment


Installing Node.js and npm

Building the Notebook from its GitHub source code requires some tools to
create and minify JavaScript components and the CSS,
specifically Node.js and Node’s package manager, npm.
It should be node version ≥ 6.0.

If you use conda, you can get them with:

conda install -c conda-forge nodejs





If you use Homebrew [https://brew.sh/] on Mac OS X:

brew install node





Installation on Linux may vary, but be aware that the nodejs or npm packages
included in the system package repository may be too old to work properly.

You can also use the installer from the Node.js website [https://nodejs.org].



Installing the Jupyter Notebook

Once you have installed the dependencies mentioned above, use the following
steps:

pip install --upgrade setuptools pip
git clone https://github.com/jupyter/notebook
cd notebook
pip install -e .





If you are using a system-wide Python installation and you only want to install the notebook for you,
you can add --user to the install commands.

Once you have done this, you can launch the master branch of Jupyter notebook
from any directory in your system with:

jupyter notebook







Verification

While running the notebook, select one of your notebook files (the file will have the extension .ipynb).
In the top tab you will click on “Help” and then click on “About”. In the pop window you will see information about the version of Jupyter that you are running. You will see “The version of the notebook server is:”.
If you are working in development mode, you will see that your version of Jupyter notebook will include the word “dev”.

[image: docs/source/_static/images/jupyter-verification.png]
If it does not include the word “dev”, you are currently not working in development mode and should follow the steps below to uninstall and reinstall Jupyter.



Troubleshooting the Installation

If you do not see that your Jupyter Notebook is not running on dev mode, it’s possible that you are
running other instances of Jupyter Notebook. You can try the following steps:


	Uninstall all instances of the notebook package. These include any installations you made using
pip or conda.


	Run python3 -m pip install -e . in the notebook repository to install the notebook from there.


	Run npm run build to make sure the Javascript and CSS are updated and compiled.


	Launch with python3 -m notebook --port 8989, and check that the browser is pointing to localhost:8989
(rather than the default 8888). You don’t necessarily have to launch with port 8989, as long as you use
a port that is neither the default nor in use, then it should be fine.


	Verify the installation with the steps in the previous section.






Rebuilding JavaScript and CSS

There is a build step for the JavaScript and CSS in the notebook.
To make sure that you are working with up-to-date code, you will need to run
this command whenever there are changes to JavaScript or LESS sources:

npm run build





IMPORTANT: Don’t forget to run npm run build after switching branches.
When switching between branches of different versions (e.g. 4.x and
master), run pip install -e .. If you have tried the above and still
find that the notebook is not reflecting the current source code, try cleaning
the repo with git clean -xfd and reinstalling with pip install -e ..


Development Tip

When doing development, you can use this command to automatically rebuild
JavaScript and LESS sources as they are modified:

npm run build:watch







Git Hooks

If you want to automatically update dependencies and recompile JavaScript and
CSS after checking out a new commit, you can install post-checkout and
post-merge hooks which will do it for you:

git-hooks/install-hooks.sh





See git-hooks/README.md for more details.





Running Tests


Python Tests

Install dependencies:

pip install -e '.[test]'





To run the Python tests, use:

pytest





If you want coverage statistics as well, you can run:

py.test --cov notebook -v --pyargs notebook







JavaScript Tests

To run the JavaScript tests, you will need to have PhantomJS and CasperJS
installed:

npm install -g casperjs phantomjs-prebuilt





Then, to run the JavaScript tests:

python -m notebook.jstest [group]





where [group] is an optional argument that is a path relative to
notebook/tests/.
For example, to run all tests in notebook/tests/notebook:

python -m notebook.jstest notebook





or to run just notebook/tests/notebook/deletecell.js:

python -m notebook.jstest notebook/deletecell.js








Building the Documentation

To build the documentation you’ll need Sphinx [http://www.sphinx-doc.org/],
pandoc [http://pandoc.org/] and a few other packages.

To install (and activate) a conda environment named notebook_docs
containing all the necessary packages (except pandoc), use:

conda create -n notebook_docs pip
conda activate notebook_docs  # Linux and OS X
activate notebook_docs        # Windows
pip install .[docs]





If you want to install the necessary packages with pip, use the following instead:

pip install .[docs]





Once you have installed the required packages, you can build the docs with:

cd docs
make html





After that, the generated HTML files will be available at
build/html/index.html. You may view the docs in your browser.

You can automatically check if all hyperlinks are still valid:

make linkcheck





Windows users can find make.bat in the docs folder.

You should also have a look at the Project Jupyter Documentation Guide [https://jupyter.readthedocs.io/en/latest/contributing/docs-contributions/index.html].





            

          

      

      

    

  

    
      
          
            
  


Developer FAQ


	How do I install a prerelease version such as a beta or release candidate?




python -m pip install notebook --pre --upgrade








            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Connecting to an existing IPython kernel using the Qt Console”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## The Frontend/Kernel Model”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The traditional IPython (ipython) consists of a single process that combines a terminal based UI with the process that runs the users code.n”,
“n”,
“While this traditional application still exists, the modern Jupyter consists of two processes:n”,
“n”,
“* Kernel: this is the process that runs the users code.n”,
“* Frontend: this is the process that provides the user interface where the user types code and sees results.n”,
“n”,
“Jupyter currently has 3 frontends:n”,
“n”,
“* Terminal Console (jupyter console)n”,
“* Qt Console (jupyter qtconsole)n”,
“* Notebook (jupyter notebook)n”,
“n”,
“The Kernel and Frontend communicate over a ZeroMQ/JSON based messaging protocol, which allows multiple Frontends (even of different types) to communicate with a single Kernel. This opens the door for all sorts of interesting things, such as connecting a Console or Qt Console to a Notebook’s Kernel.  For example, you may want to connect a Qt console to your Notebook’s Kernel and use it as a helpn”,
“browser, calling ?? on objects in the Qt console (whose pager is more flexible than then”,
“one in the notebook).  n”,
“n”,
“This Notebook describes how you would connect another Frontend to an IPython Kernel that is associated with a Notebook.n”,
“The commands currently given here are specific to the IPython kernel.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Manual connection”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“To connect another Frontend to a Kernel manually, you first need to find out the connection information for the Kernel using the %connect_info magic:”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {},
“outputs”: [],
“source”: [


“%connect_info”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can see that this magic displays everything you need to connect to this Notebook’s Kernel.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Automatic connection using a new Qt Console”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can also start a new Qt Console connected to your current Kernel by using the %qtconsole magic. This will detect the necessary connectionn”,
“information and start the Qt Console for you automatically.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {},
“outputs”: [],
“source”: [


“a = 10”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {},
“outputs”: [],
“source”: [


“%qtconsole”




]




}





],
“metadata”: {



	“nbsphinx”: {
	“execute”: “never”





},
“kernelspec”: {


“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”




},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.5.2”




}




},
“nbformat”: 4,
“nbformat_minor”: 1





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Keyboard Shortcut Customization”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Starting with Jupyter Notebook 5.0, you can customize the command mode shortcuts from within the Notebook Application itself. n”,
“n”,
“Head to the `Help` menu and select the `Edit keyboard Shortcuts` item.n”,
“A dialog will guide you through the process of adding custom keyboard shortcuts.n”,
“n”,
“Keyboard shortcut set from within the Notebook Application will be persisted to your configuration file. n”,
“A single action may have several shortcuts attached to it.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Keyboard Shortcut Customization (Pre Notebook 5.0)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Starting with IPython 2.0 keyboard shortcuts in command and edit mode are fully customizable. These customizations are made using the Jupyter JavaScript API. Here is an example that makes the r key available for running a cell:”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {},
“outputs”: [],
“source”: [


“%%javascriptn”,
“n”,
“Jupyter.keyboard_manager.command_shortcuts.add_shortcut(‘r’, {n”,
”    help : ‘run cell’,n”,
”    help_index : ‘zz’,n”,
”    handler : function (event) {n”,
”        IPython.notebook.execute_cell();n”,
”        return false;n”,
”    }}n”,
“);”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“"By default the keypress r, while in command mode, changes the type of the selected cell to raw.  This shortcut is overridden by the code in the previous cell, and thus the action no longer be available via the keypress r."”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“There are a couple of points to mention about this API:n”,
“n”,
“* The help_index field is used to sort the shortcuts in the Keyboard Shortcuts help dialog. It defaults to zz.n”,
“* When a handler returns false it indicates that the event should stop propagating and the default action should not be performed. For further details about the event object or event handling, see the jQuery docs.n”,
“* If you don’t need a help or help_index field, you can simply pass a function as the second argument to add_shortcut.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {},
“outputs”: [],
“source”: [


“%%javascriptn”,
“n”,
“Jupyter.keyboard_manager.command_shortcuts.add_shortcut(‘r’, function (event) {n”,
”    IPython.notebook.execute_cell();n”,
”    return false;n”,
“});”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Likewise, to remove a shortcut, use remove_shortcut:”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {},
“outputs”: [],
“source”: [


“%%javascriptn”,
“n”,
“Jupyter.keyboard_manager.command_shortcuts.remove_shortcut(‘r’);”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“If you want your keyboard shortcuts to be active for all of your notebooks, put the above API calls into your custom.js file.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {


“collapsed”: true




},
“source”: [


“Of course we provide name for majority of existing action so that you do not have to re-write everything, here is for example how to bind r back to it’s initial behavior:”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {},
“outputs”: [],
“source”: [


“%%javascriptn”,
“n”,
“Jupyter.keyboard_manager.command_shortcuts.add_shortcut(‘r’, ‘jupyter-notebook:change-cell-to-raw’);”




]




}





],
“metadata”: {



	“nbsphinx”: {
	“execute”: “never”





},
“kernelspec”: {


“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”




},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.5.2”




}




},
“nbformat”: 4,
“nbformat_minor”: 1





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Distributing Jupyter Extensions as Python Packages”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Overviewn”,
“### How can the notebook be extended?n”,
“The Jupyter Notebook client and server application are both deeply customizable. Their behavior can be extended by creating, respectively:n”,
“n”,
“- nbextension: a notebook extensionn”,
”    - a single JS file, or directory of JavaScript, Cascading StyleSheets, etc. that contain atn”,
”      minimum a JavaScript module packaged as ann”,
”      [AMD modules](https://en.wikipedia.org/wiki/Asynchronous_module_definition)n”,
”      that exports a function load_ipython_extensionn”,
“- server extension: an importable Python modulen”,
”    - that implements load_jupyter_server_extensionn”,
“- bundler extension: an importable Python module with generated File -> Download as / Deploy as menu item triggern”,
”    - that implements bundle”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Why create a Python package for Jupyter extensions?n”,
“Since it is rare to have a server extension that does not have any frontend components (an nbextension), for convenience and consistency, all these client and server extensions with their assets can be packaged and versioned together as a Python package with a few simple commands, or as of Notebook 5.3, handled automatically by your package manager of choice. This makes installing the package of extensions easier and less error-prone for the user.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Installation of Jupyter Extensionsn”,
“### Install a Python package containing Jupyter Extensionsn”,
“There are several ways that you may get a Python package containing Jupyter Extensions. Commonly, you will use a package manager for your system:n”,
“`shell\n",
"pip install helpful_package\n",
"# or\n",
"conda install helpful_package\n",
"# or\n",
"apt-get install helpful_package\n",
"\n",
"# where 'helpful_package' is a Python package containing one or more Jupyter Extensions\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Automatic installation and Enablingn”,
“> New in Notebook 5.3n”,
“n”,
“The absolute simplest case requires no user interaction at all! Configured correctly, after installing with their package manager of choice, both server and frontend extensions can be enabled by default in the environment where they were installed, i.e. –sys-prefix. See the setup.py in the example below.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Enable a Server Extensionn”,
“n”,
“The simplest case would be to enable a server extension which has no frontend components. n”,
“n”,
“A pip user that wants their configuration stored in their home directory would type the following command:n”,
“`shell\n",
"jupyter serverextension enable --py helpful_package\n",
"`n”,
“n”,
“Alternatively, a virtualenv or conda user can pass –sys-prefix which keeps their environment isolated and reproducible. For example:n”,
“`shell\n",
"# Make sure that your virtualenv or conda environment is activated\n",
"[source] activate my-environment\n",
"\n",
"jupyter serverextension enable --py helpful_package --sys-prefix\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Install the nbextension assets”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“If a package also has an nbextension with frontend assets that must be available (but not neccessarily enabled by default), install these assets with the following command:n”,
“`shell\n",
"jupyter nbextension install --py helpful_package # or --sys-prefix if using virtualenv or conda\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Enable nbextension assetsn”,
“If a package has assets that should be loaded every time a Jupyter app (e.g. lab, notebook, dashboard, terminal) is loaded in the browser, the following command can be used to enable the nbextension:n”,
“`shell\n",
"jupyter nbextension enable --py helpful_package # or --sys-prefix if using virtualenv or conda\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Did it work? Check by listing Jupyter Extensions.n”,
“After running one or more extension installation steps, you can list what is presently known about nbextensions, server extensions, or bundler extensions. The following commands will list which extensions are available, whether they are enabled, and other extension details:n”,
“n”,
“`shell\n",
"jupyter nbextension list\n",
"jupyter serverextension list\n",
"jupyter bundlerextension list\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Additional resources on creating and distributing packages        n”,
“n”,
“> Of course, in addition to the files listed, there are number of other files one needs to build a proper package. Here are some good resources:n”,
“- [The Hitchhiker’s Guide to Packaging](https://the-hitchhikers-guide-to-packaging.readthedocs.io/en/latest/quickstart.html)n”,
“- [Repository Structure and Python](https://kenreitz.org/essays/2013/01/27/repository-structure-and-python) by Kenneth Reitzn”,
“n”,
“> How you distribute them, too, is important:n”,
“- [Packaging and Distributing Projects](https://python-packaging-user-guide.readthedocs.io/tutorials/distributing-packages/)n”,
“- [conda: Building packages](https://conda.io/projects/conda-build/en/latest/user-guide/tutorials/building-conda-packages.html)n”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Example - Server extension”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Creating a Python package with a server extensionn”,
“n”,
“Here is an example of a python module which contains a server extension directly on itself. It has this directory structure:n”,
“`\n",
"- setup.py\n",
"- MANIFEST.in\n",
"- my_module/\n",
"  - __init__.py\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Defining the server extensionn”,
“This example shows that the server extension and its load_jupyter_server_extension function are defined in the __init__.py file.n”,
“n”,
“#### my_module/__init__.pyn”,
“n”,
“`python\n",
"def _jupyter_server_extension_paths():\n",
"    return [{\n",
"        \"module\": \"my_module\"\n",
"    }]\n",
"\n",
"\n",
"def load_jupyter_server_extension(nbapp):\n",
"    nbapp.log.info(\"my module enabled!\")\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Install and enable the server extensionn”,
“Which a user can install with:n”,
“`\n",
"jupyter serverextension enable --py my_module [--sys-prefix]\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Example - Server extension and nbextension”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Creating a Python package with a server extension and nbextensionn”,
“Here is another server extension, with a front-end module.  It assumes this directory structure:n”,
“n”,
“`\n",
"- setup.py\n",
"- MANIFEST.in\n",
"- my_fancy_module/\n",
"  - __init__.py\n",
"  - static/\n",
"    index.js\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {


“collapsed”: true




},
“source”: [


“### Defining the server extension and nbextensionn”,
“This example again shows that the server extension and its load_jupyter_server_extension function are defined in the __init__.py file. This time, there is also a function _jupyter_nbextension_paths for the nbextension.n”,
“n”,
“#### my_fancy_module/__init__.pyn”,
“n”,
“`python\n",
"def _jupyter_server_extension_paths():\n",
"    return [{\n",
"        \"module\": \"my_fancy_module\"\n",
"    }]\n",
"\n",
"# Jupyter Extension points\n",
"def _jupyter_nbextension_paths():\n",
"    return [dict(\n",
"        section=\"notebook\",\n",
"        # the path is relative to the `my_fancy_module` directory\n",
"        src=\"static\",\n",
"        # directory in the `nbextension/` namespace\n",
"        dest=\"my_fancy_module\",\n",
"        # _also_ in the `nbextension/` namespace\n",
"        require=\"my_fancy_module/index\")]\n",
"\n",
"def load_jupyter_server_extension(nbapp):\n",
"    nbapp.log.info(\"my module enabled!\")\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Install and enable the server extension and nbextensionn”,
“n”,
“The user can install and enable the extensions with the following set of commands:n”,
“`\n",
"jupyter nbextension install --py my_fancy_module [--sys-prefix|--user]\n",
"jupyter nbextension enable --py my_fancy_module [--sys-prefix|--system]\n",
"jupyter serverextension enable --py my_fancy_module [--sys-prefix|--system]\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Automatically enabling a server extension and nbextensionn”,
“> New in Notebook 5.3n”,
“n”,
“Server extensions and nbextensions can be installed and enabled without any user intervention or post-install scripts beyond <package manager> install <extension package name>”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“In addition to the my_fancy_module file tree, assume:n”,
“n”,
“`\n",
"jupyter-config/\n",
"├── jupyter_notebook_config.d/\n",
"│   └── my_fancy_module.json\n",
"└── nbconfig/\n",
"    └── notebook.d/\n",
"        └── my_fancy_module.json\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### jupyter-config/jupyter_notebook_config.d/my_fancy_module.jsonn”,
“`json\n",
"{\n",
"  \"NotebookApp\": {\n",
"    \"nbserver_extensions\": {\n",
"      \"my_fancy_module\": true\n",
"    }\n",
"  }\n",
"}\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### jupyter-config/nbconfig/notebook.d/my_fancy_module.jsonn”,
“`json\n",
"{\n",
"  \"load_extensions\": {\n",
"    \"my_fancy_module/index\": true\n",
"  }\n",
"}\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Put all of them in place via:n”,
“n”,
“#### setup.pyn”,
“`python\n",
"import setuptools\n",
"\n",
"setuptools.setup(\n",
"    name=\"MyFancyModule\",\n",
"    ...\n",
"    include_package_data=True,\n",
"    data_files=[\n",
"        # like `jupyter nbextension install --sys-prefix`\n",
"        (\"share/jupyter/nbextensions/my_fancy_module\", [\n",
"            \"my_fancy_module/static/index.js\",\n",
"        ]),\n",
"        # like `jupyter nbextension enable --sys-prefix`\n",
"        (\"etc/jupyter/nbconfig/notebook.d\", [\n",
"            \"jupyter-config/nbconfig/notebook.d/my_fancy_module.json\"\n",
"        ]),\n",
"        # like `jupyter serverextension enable --sys-prefix`\n",
"        (\"etc/jupyter/jupyter_notebook_config.d\", [\n",
"            \"jupyter-config/jupyter_notebook_config.d/my_fancy_module.json\"\n",
"        ])\n",
"    ],\n",
"    ...\n",
"    zip_safe=False\n",
")\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“and last, but not least:n”,
“n”,
“#### MANIFEST.inn”,
“`config\n",
"recursive-include jupyter-config *.json\n",
"recursive-include my_fancy_module/static *.js\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“As most package managers will only modify their environment, the eventual configuration will be as if the user had typed:n”,
“`\n",
"jupyter nbextension install --py my_fancy_module --sys-prefix\n",
"jupyter nbextension enable --py my_fancy_module --sys-prefix\n",
"jupyter serverextension enable --py my_fancy_module --sys-prefix\n",
"`n”,
“n”,
“If a user manually `disable`s an extension, that configuration will override the bundled package configuration.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### When automagical install failsn”,
“Note this can still fail in certain situations with pip, requiring manual use of install and enable commands.n”,
“n”,
“Non-python-specific package managers (e.g. conda, apt) may choose not to implement the above behavior at the setup.py level, having more ways to put data files in various places at build time.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Example - Bundler extension”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Creating a Python package with a bundlerextensionn”,
“n”,
“Here is a bundler extension that adds a Download as -> Notebook Tarball (tar.gz) option to the notebook File menu. It assumes this directory structure:n”,
“n”,
“`\n",
"- setup.py\n",
"- MANIFEST.in\n",
"- my_tarball_bundler/\n",
"  - __init__.py\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Defining the bundler extensionn”,
“n”,
“This example shows that the bundler extension and its bundle function are defined in the __init__.py file.n”,
“n”,
“#### my_tarball_bundler/__init__.pyn”,
“n”,
“`python\n",
"import tarfile\n",
"import io\n",
"import os\n",
"import nbformat\n",
"\n",
"def _jupyter_bundlerextension_paths():\n",
"    \"\"\"Declare bundler extensions provided by this package.\"\"\"\n",
"    return [{\n",
"        # unique bundler name\n",
"        \"name\": \"tarball_bundler\",\n",
"        # module containing bundle function\n",
"        \"module_name\": \"my_tarball_bundler\",\n",
"        # human-readable menu item label\n",
"        \"label\" : \"Notebook Tarball (tar.gz)\",\n",
"        # group under 'deploy' or 'download' menu\n",
"        \"group\" : \"download\",\n",
"    }]\n",
"\n",
"\n",
"def bundle(handler, model):\n",
"    \"\"\"Create a compressed tarball containing the notebook document.\n",
"    \n",
"    Parameters\n",
"    ----------\n",
"    handler : tornado.web.RequestHandler\n",
"        Handler that serviced the bundle request\n",
"    model : dict\n",
"        Notebook model from the configured ContentManager\n",
"    \"\"\"\n",
"    notebook_filename = model['name']\n",
"    notebook_content = nbformat.writes(model['content']).encode('utf-8')\n",
"    notebook_name = os.path.splitext(notebook_filename)[0]\n",
"    tar_filename = '{}.tar.gz'.format(notebook_name)\n",
"    \n",
"    info = tarfile.TarInfo(notebook_filename)\n",
"    info.size = len(notebook_content)\n",
"\n",
"    with io.BytesIO() as tar_buffer:\n",
"        with tarfile.open(tar_filename, \"w:gz\", fileobj=tar_buffer) as tar:\n",
"            tar.addfile(info, io.BytesIO(notebook_content))\n",
"        \n",
"        # Set headers to trigger browser download\n",
"        handler.set_header('Content-Disposition',\n",
"                           'attachment; filename=\"{}\"'.format(tar_filename))\n",
"        handler.set_header('Content-Type', 'application/gzip')\n",
"                \n",
"        # Return the buffer value as the response\n",
"        handler.finish(tar_buffer.getvalue())\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“See [Extending the Notebook](../../extending/index.rst) for more documentation about writing nbextensions, server extensions, and bundler extensions.”




]




}





],
“metadata”: {



	“kernelspec”: {
	“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”





},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.7.2”




}




},
“nbformat”: 4,
“nbformat_minor”: 1





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Importing Jupyter Notebooks as Modules”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“It is a common problem that people want to import code from Jupyter Notebooks.n”,
“This is made difficult by the fact that Notebooks are not plain Python files,n”,
“and thus cannot be imported by the regular Python machinery.n”,
“n”,
“Fortunately, Python provides some fairly sophisticated [hooks](https://www.python.org/dev/peps/pep-0302/) into the import machinery,n”,
“so we can actually make Jupyter notebooks importable without much difficulty,n”,
“and only using public APIs.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“import io, os, sys, types”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“from IPython import get_ipythonn”,
“from nbformat import readn”,
“from IPython.core.interactiveshell import InteractiveShell”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Import hooks typically take the form of two objects:n”,
“n”,
“1. a Module Loader, which takes a module name (e.g. ‘IPython.display’), and returns a Modulen”,
“2. a Module Finder, which figures out whether a module might exist, and tells Python what Loader to use”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“def find_notebook(fullname, path=None):n”,
”    """find a notebook, given its fully qualified name and an optional pathn”,
”    n”,
”    This turns "foo.bar" into "foo/bar.ipynb"n”,
”    and tries turning "Foo_Bar" into "Foo Bar" if Foo_Barn”,
”    does not exist.n”,
”    """n”,
”    name = fullname.rsplit(‘.’, 1)[-1]n”,
”    if not path:n”,
”        path = [‘’]n”,
”    for d in path:n”,
”        nb_path = os.path.join(d, name + ".ipynb")n”,
”        if os.path.isfile(nb_path):n”,
”            return nb_pathn”,
”        # let import Notebook_Name find "Notebook Name.ipynb"n”,
”        nb_path = nb_path.replace("_", " ")n”,
”        if os.path.isfile(nb_path):n”,
”            return nb_pathn”,
”            “




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Notebook Loader”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Here we have our Notebook Loader.n”,
“It’s actually quite simple - once we figure out the filename of the module,n”,
“all it does is:n”,
“n”,
“1. load the notebook document into memoryn”,
“2. create an empty Modulen”,
“3. execute every cell in the Module namespacen”,
“n”,
“Since IPython cells can have extended syntax,n”,
“the IPython transform is applied to turn each of these cells into their pure-Python counterparts before executing them.n”,
“If all of your notebook cells are pure-Python,n”,
“this step is unnecessary.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“class NotebookLoader(object):n”,
”    """Module Loader for Jupyter Notebooks"""n”,
”    def __init__(self, path=None):n”,
”        self.shell = InteractiveShell.instance()n”,
”        self.path = pathn”,
”    n”,
”    def load_module(self, fullname):n”,
”        """import a notebook as a module"""n”,
”        path = find_notebook(fullname, self.path)n”,
”        n”,
”        print ("importing Jupyter notebook from %s" % path)n”,
”                                       n”,
”        # load the notebook objectn”,
”        with io.open(path, ‘r’, encoding=’utf-8’) as f:n”,
”            nb = read(f, 4)n”,
”        n”,
”        n”,
”        # create the module and add it to sys.modulesn”,
”        # if name in sys.modules:n”,
”        #    return sys.modules[name]n”,
”        mod = types.ModuleType(fullname)n”,
”        mod.__file__ = pathn”,
”        mod.__loader__ = selfn”,
”        mod.__dict__[‘get_ipython’] = get_ipythonn”,
”        sys.modules[fullname] = modn”,
”        n”,
”        # extra work to ensure that magics that would affect the user_nsn”,
”        # actually affect the notebook module’s nsn”,
”        save_user_ns = self.shell.user_nsn”,
”        self.shell.user_ns = mod.__dict__n”,
”        n”,
”        try:n”,
”          for cell in nb.cells:n”,
”            if cell.cell_type == ‘code’:n”,
”                # transform the input to executable Pythonn”,
”                code = self.shell.input_transformer_manager.transform_cell(cell.source)n”,
”                # run the code in themodulen”,
”                exec(code, mod.__dict__)n”,
”        finally:n”,
”            self.shell.user_ns = save_user_nsn”,
”        return modn”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## The Module Finder”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The finder is a simple object that tells you whether a name can be imported,n”,
“and returns the appropriate loader.n”,
“All this one does is check, when you do:n”,
“n”,
“`python\n",
"import mynotebook\n",
"`n”,
“n”,
“it checks whether mynotebook.ipynb exists.n”,
“If a notebook is found, then it returns a NotebookLoader.n”,
“n”,
“Any extra logic is just for resolving paths within packages.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“class NotebookFinder(object):n”,
”    """Module finder that locates Jupyter Notebooks"""n”,
”    def __init__(self):n”,
”        self.loaders = {}n”,
”    n”,
”    def find_module(self, fullname, path=None):n”,
”        nb_path = find_notebook(fullname, path)n”,
”        if not nb_path:n”,
”            returnn”,
”        n”,
”        key = pathn”,
”        if path:n”,
”            # lists aren’t hashablen”,
”            key = os.path.sep.join(path)n”,
”        n”,
”        if key not in self.loaders:n”,
”            self.loaders[key] = NotebookLoader(path)n”,
”        return self.loaders[key]n”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Register the hook”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Now we register the NotebookFinder with sys.meta_path”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“sys.meta_path.append(NotebookFinder())”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“After this point, my notebooks should be importable.n”,
“n”,
“Let’s look at what we have in the CWD:”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“ls nbpackage”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“So I should be able to import nbpackage.mynotebook.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“import nbpackage.mynotebook”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Aside: displaying notebooks”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Here is some simple code to display the contents of a notebookn”,
“with syntax highlighting, etc.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“from pygments import highlightn”,
“from pygments.lexers import PythonLexern”,
“from pygments.formatters import HtmlFormattern”,
“n”,
“from IPython.display import display, HTMLn”,
“n”,
“formatter = HtmlFormatter()n”,
“lexer = PythonLexer()n”,
“n”,
“# publish the CSS for pygments highlightingn”,
“display(HTML("""n”,
“<style type=’text/css’>n”,
“%sn”,
“</style>n”,
“""" % formatter.get_style_defs()n”,
“))”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“def show_notebook(fname):n”,
”    """display a short summary of the cells of a notebook"""n”,
”    with io.open(fname, ‘r’, encoding=’utf-8’) as f:n”,
”        nb = read(f, 4)n”,
”    html = []n”,
”    for cell in nb.cells:n”,
”        html.append("<h4>%s cell</h4>" % cell.cell_type)n”,
”        if cell.cell_type == ‘code’:n”,
”            html.append(highlight(cell.source, lexer, formatter))n”,
”        else:n”,
”            html.append("<pre>%s</pre>" % cell.source)n”,
”    display(HTML(’\n’.join(html)))n”,
“n”,
“show_notebook(os.path.join("nbpackage", "mynotebook.ipynb"))”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“So my notebook has some code cells,n”,
“one of which contains some IPython syntax.n”,
“n”,
“Let’s see what happens when we import it”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“from nbpackage import mynotebook”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Hooray, it imported!  Does it work?”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“mynotebook.foo()”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Hooray again!n”,
“n”,
“Even the function that contains IPython syntax works:”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“mynotebook.has_ip_syntax()”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Notebooks in packages”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“We also have a notebook inside the nb package,n”,
“so let’s make sure that works as well.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“ls nbpackage/nbs”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Note that the __init__.py is necessary for nb to be considered a package,n”,
“just like usual.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“show_notebook(os.path.join("nbpackage", "nbs", "other.ipynb"))”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“from nbpackage.nbs import othern”,
“other.bar(5)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“So now we have importable notebooks, from both the local directory and inside packages.n”,
“n”,
“I can even put a notebook inside IPython, to further demonstrate that this is working properly:”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“import shutiln”,
“from IPython.paths import get_ipython_package_dirn”,
“n”,
“utils = os.path.join(get_ipython_package_dir(), ‘utils’)n”,
“shutil.copy(os.path.join("nbpackage", "mynotebook.ipynb"),n”,
”            os.path.join(utils, "inside_ipython.ipynb")n”,
“)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“and import the notebook from IPython.utils”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“from IPython.utils import inside_ipythonn”,
“inside_ipython.whatsmyname()”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“This approach can even import functions and classes that are defined in a notebook using the %%cython magic.”




]




}





],
“metadata”: {


“gist_id”: “6011986”,
“nbsphinx”: {


“execute”: “never”




},
“kernelspec”: {


“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”




},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.5.1+”




}




},
“nbformat”: 4,
“nbformat_minor”: 0





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Embracing web standards”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“One of the main reasons why we developed the current notebook web application n”,
“was to embrace the web technology. n”,
“n”,
“By being a pure web application using HTML, JavaScript, and CSS, the Notebook can get n”,
“all the web technology improvement for free. Thus, as browser support for different n”,
“media extend, the notebook web app should be able to be compatible without modification. n”,
“n”,
“This is also true with performance of the User Interface as the speed of JavaScript VM increases. “




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The other advantage of using only web technology is that the code of the interface is fully accessible to the end user and is modifiable live.n”,
“Even if this task is not always easy, we strive to keep our code as accessible and reusable as possible.n”,
“This should allow us - with minimum effort - development of small extensions that customize the behavior of the web interface. “




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Tampering with the Notebook application”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The first tool that is available to you and that you should be aware of are browser "developers tool". The exact naming can change across browser and might require the installation of extensions. But basically they can allow you to inspect/modify the DOM, and interact with the JavaScript code that runs the frontend.n”,
“n”,
” - In Chrome and Safari, Developer tools are in the menu View > Developer > JavaScript Console  n”,
” - In Firefox you might need to install [Firebug](http://getfirebug.com/)n”,
” n”,
“Those will be your best friends to debug and try different approaches for your extensions.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Injecting JS”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### Using magics”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The above tools can be tedious for editing edit long JavaScript files. Therefore we provide the %%javascript magic. This allows you to quickly inject JavaScript into the notebook. Still the JavaScript injected this way will not survive reloading. Hence, it is a good tool for testing and refining a script.n”,
“n”,
“You might see here and there people modifying css and injecting js into the notebook by reading file(s) and publishing them into the notebook.n”,
“Not only does this often break the flow of the notebook and make the re-execution of the notebook broken, but it also means that you need to execute those cells in the entire notebook every time you need to update the code.n”,
“n”,
“This can still be useful in some cases, like the %autosave magic that allows you to control the time between each save. But this can be replaced by a JavaScript dropdown menu to select the save interval.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“## you can inspect the autosave code to see what it does.n”,
“%autosave??”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### custom.js”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“To inject JavaScript we provide an entry point: custom.js that allows the user to execute and load other resources into the notebook.n”,
“JavaScript code in custom.js will be executed when the notebook app starts and can then be used to customize almost anything in the UI and in the behavior of the notebook.n”,
“n”,
“custom.js can be found in the ~/.jupyter/custom/custom.js.  You can share your custom.js with others.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“##### Back to theory”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“from jupyter_core.paths import jupyter_config_dirn”,
“jupyter_dir = jupyter_config_dir()n”,
“jupyter_dir”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“and custom js is in “




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“import os.pathn”,
“custom_js_path = os.path.join(jupyter_dir, ‘custom’, ‘custom.js’)”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“#  my custom jsn”,
“if os.path.isfile(custom_js_path):n”,
”    with open(custom_js_path) as f:n”,
”        print(f.read())n”,
“else:n”,
”    print("You don’t have a custom.js file")  “




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Note that custom.js is meant to be modified by user. When writing a script, you can define it in a separate file and add a line of configuration into custom.js that will fetch and execute the file.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Warning : even if modification of custom.js takes effect immediately after browser refresh (except if browser cache is aggressive), creating a file in static/ directory needs a server restart.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Exercise :”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


” - Create a custom.js in the right location with the following content:n”,
“`javascript\n",
"alert(\"hello world from custom.js\")\n",
"`n”,
“n”,
” - Restart your server and open any notebook.n”,
” - Be greeted by custom.js”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Have a look at [default custom.js](https://github.com/jupyter/notebook/blob/4.0.x/notebook/static/custom/custom.js), to see it’s content and for more explanation.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### For the quick ones : “




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“We’ve seen above that you can change the autosave rate by using a magic. This is typically something I don’t want to type every time, and that I don’t like to embed into my workflow and documents. (readers don’t care what my autosave time is). Let’s build an extension that allows us to do it.  “




]




},
{


“cell_type”: “markdown”,
“metadata”: {


“foo”: true




},
“source”: [


“Create a dropdown element in the toolbar (DOM Jupyter.toolbar.element), you will need n”,
“n”,
“- Jupyter.notebook.set_autosave_interval(milliseconds)n”,
“- know that 1 min = 60 sec, and 1 sec = 1000 ms”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“`javascript\n",
"\n",
"var label = jQuery('<label/>').text('AutoScroll Limit:');\n",
"var select = jQuery('<select/>')\n",
"     //.append(jQuery('<option/>').attr('value', '2').text('2min (default)'))\n",
"     .append(jQuery('<option/>').attr('value', undefined).text('disabled'))\n",
"\n",
"     // TODO:\n",
"     //the_toolbar_element.append(label)\n",
"     //the_toolbar_element.append(select);\n",
"     \n",
"select.change(function() {\n",
"     var val = jQuery(this).val() // val will be the value in [2]\n",
"     // TODO\n",
"     // this will be called when dropdown changes\n",
"\n",
"});\n",
"\n",
"var time_m = [1,5,10,15,30];\n",
"for (var i=0; i < time_m.length; i++) {\n",
"     var ts = time_m[i];\n",
"                                          //[2]   ____ this will be `val` on [1]  \n",
"                                          //     | \n",
"                                          //     v \n",
"     select.append($('<option/>').attr('value', ts).text(thr+'min'));\n",
"     // this will fill up the dropdown `select` with\n",
"     // 1 min\n",
"     // 5 min\n",
"     // 10 min\n",
"     // 10 min\n",
"     // ...\n",
"}\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### A non-interactive example first”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“I like my cython to be nicely highlightedn”,
“n”,
“`javascript\n",
"Jupyter.config.cell_magic_highlight['magic_text/x-cython'] = {}\n",
"Jupyter.config.cell_magic_highlight['magic_text/x-cython'].reg = [/^%%cython/]\n",
"`n”,
“n”,
“text/x-cython is the name of CodeMirror mode name, magic_ prefix will just patch the mode so that the first line that contains a magic does not screw up the highlighting. `reg`is a list or regular expression that will trigger the change of mode.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### Get more documentation”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Sadly, you will have to read the js source file (but there are lots of comments) and/or build the JavaScript documentation using yuidoc.n”,
“If you have node and yui-doc installed:”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“`bash\n",
"$ cd ~/jupyter/notebook/notebook/static/notebook/js/\n",
"$ yuidoc . --server\n",
"warn: (yuidoc): Failed to extract port, setting to the default :3000\n",
"info: (yuidoc): Starting YUIDoc@0.3.45 using YUI@3.9.1 with NodeJS@0.10.15\n",
"info: (yuidoc): Scanning for yuidoc.json file.\n",
"info: (yuidoc): Starting YUIDoc with the following options:\n",
"info: (yuidoc):\n",
"{ port: 3000,\n",
"  nocode: false,\n",
"  paths: [ '.' ],\n",
"  server: true,\n",
"  outdir: './out' }\n",
"info: (yuidoc): Scanning for yuidoc.json file.\n",
"info: (server): Starting server: http://127.0.0.1:3000\n",
"`n”,
“n”,
“and browse http://127.0.0.1:3000 to get documentation”




]




},
{


“cell_type”: “markdown”,
“metadata”: {


“foo”: true




},
“source”: [


“#### Some convenience methods”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“By browsing the documentation you will see that we have some convenience methods that allows us to avoid re-inventing the UI every time :n”,
“`javascript\n",
"Jupyter.toolbar.add_buttons_group([\n",
"        {\n",
"             'label'   : 'run qtconsole',\n",
"             'icon'    : 'fa-terminal', // select your icon from \n",
"                                          // http://fontawesome.io/icons/\n",
"             'callback': function(){Jupyter.notebook.kernel.execute('%qtconsole')}\n",
"        }\n",
"        // add more button here if needed.\n",
"        ]);\n",
"`n”,
“with a [lot of icons] you can select from. n”,
“n”,
“[lot of icons]: http://fontawesome.io/icons/”




]




},
{


“cell_type”: “markdown”,
“metadata”: {


“foo”: true




},
“source”: [


“## Cell Metadata”




]




},
{


“cell_type”: “markdown”,
“metadata”: {


“foo”: true




},
“source”: [


“The most requested feature is generally to be able to distinguish an individual cell in the notebook, or run a specific action with them.n”,
“To do so, you can either use Jupyter.notebook.get_selected_cell(), or rely on CellToolbar. This allows you to register a set of actions and graphical elements that will be attached to individual cells.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Cell Toolbar”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can see some example of what can be done by toggling the Cell Toolbar selector in the toolbar on top of the notebook. It provides two default presets that are Default and slideshow. Default allows the user to edit the metadata attached to each cell manually.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“First we define a function that takes at first parameter an element on the DOM in which to inject UI element. The second element is the cell this element wis registered with. Then we will need to register that function and give it a name.n”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### Register a callback”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“%%javascriptn”,
“var CellToolbar = Jupyter.CellToolbarn”,
“var toggle =  function(div, cell) {n”,
”     var button_container = $(div)n”,
“n”,
”     // let’s create a button that shows the current value of the metadatan”,
”     var button = $(‘<button/>’).addClass(‘btn btn-mini’).text(String(cell.metadata.foo));n”,
“n”,
”     // On click, change the metadata value and update the button labeln”,
”     button.click(function(){n”,
”                 var v = cell.metadata.foo;n”,
”                 cell.metadata.foo = !v;n”,
”                 button.text(String(!v));n”,
”             })n”,
“n”,
”     // add the button to the DOM div.n”,
”     button_container.append(button);n”,
“}n”,
“n”,
” // now we register the callback under the name foo to give then”,
” // user the ability to use it latern”,
” CellToolbar.register_callback(‘tuto.foo’, toggle);”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### Registering a preset”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“This function can now be part of many preset of the CellToolBar.”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: false,
“foo”: true,
“slideshow”: {


“slide_type”: “subslide”




}




},
“outputs”: [],
“source”: [


“%%javascriptn”,
“Jupyter.CellToolbar.register_preset(‘Tutorial 1’,[‘tuto.foo’,’default.rawedit’])n”,
“Jupyter.CellToolbar.register_preset(‘Tutorial 2’,[‘slideshow.select’,’tuto.foo’])”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You should now have access to two presets :n”,
“n”,
”  - Tutorial 1n”,
”  - Tutorial 2n”,
”  n”,
“And check that the buttons you defined share state when you toggle preset. n”,
“Also check that the metadata of the cell is modified when you click the button, and that when saved on reloaded the metadata is still available.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### Exercise:”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Try to wrap the all code in a file, put this file in {jupyter_dir}/custom/<a-name>.js, and add n”,
“n”,
“`\n",
"require(['custom/<a-name>']);\n",
"`n”,
“n”,
“in custom.js to have this script automatically loaded in all your notebooks.n”,
“n”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“require is provided by a [JavaScript library](http://requirejs.org/) that allow you to express dependency. For simple extension like the previous one we directly mute the global namespace, but for more complex extension you could pass a callback to require([…], <callback>) call, to allow the user to pass configuration information to your plugin.n”,
“n”,
“In Python language, n”,
“n”,
“`javascript\n",
"require(['a/b', 'c/d'], function( e, f){\n",
"    e.something()\n",
"    f.something()\n",
"})\n",
"`n”,
“n”,
“could be read asn”,
“`python\n",
"import a.b as e\n",
"import c.d as f\n",
"e.something()\n",
"f.something()\n",
"`n”,
“n”,
“n”,
“See for example @damianavila ["ZenMode" plugin](https://github.com/ipython-contrib/jupyter_contrib_nbextensions/blob/b29c698394239a6931fa4911440550df214812cb/src/jupyter_contrib_nbextensions/nbextensions/zenmode/main.js#L32) :n”,
“n”,
“`javascript\n",
"\n",
"// read that as\n",
"// import custom.zenmode.main as zenmode\n",
"require(['custom/zenmode/main'],function(zenmode){\n",
"    zenmode.background('images/back12.jpg');\n",
"})\n",
"`n”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“#### For the quickest”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Try to use [the following](https://github.com/ipython/ipython/blob/1.x/IPython/html/static/notebook/js/celltoolbar.js#L367) to bind a dropdown list to cell.metadata.difficulty.select. n”,
“n”,
“It should be able to take the 4 following values :n”,
“n”,
” - <None>n”,
” - Easyn”,
” - Mediumn”,
” - Hardn”,
” n”,
“We will use it to customize the output of the converted notebook depending on the tag on each cell”




]




},
{


“cell_type”: “code”,
“execution_count”: 1,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“# %load soln/celldiff.js”




]




},
{


“cell_type”: “code”,
“execution_count”: null,
“metadata”: {


“collapsed”: true




},
“outputs”: [],
“source”: []




}





],
“metadata”: {



	“kernelspec”: {
	“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”





},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.5.2”




}




},
“nbformat”: 4,
“nbformat_minor”: 1





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Notebook Basics”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## The Notebook dashboard”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“When you first start the notebook server, your browser will open to the notebook dashboard. The dashboard serves as a home page for the notebook. Its main purpose is to display the notebooks and files in the current directory. For example, here is a screenshot of the dashboard page for the examples directory in the Jupyter repository:n”,
“n”,
“![Jupyter dashboard showing files tab](images/dashboard_files_tab.png)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The top of the notebook list displays clickable breadcrumbs of the current directory. By clicking on these breadcrumbs or on sub-directories in the notebook list, you can navigate your file system.n”,
“n”,
“To create a new notebook, click on the "New" button at the top of the list and select a kernel from the dropdown (as seen below).  Which kernels are listed depend on what’s installed on the server.  Some of the kernels in the screenshot below may not exist as an option to you.n”,
“n”,
“![Jupyter "New" menu](images/dashboard_files_tab_new.png)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Notebooks and files can be uploaded to the current directory by dragging a notebook file onto the notebook list or by the "click here" text above the list.n”,
“n”,
“The notebook list shows green "Running" text and a green notebook icon next to running notebooks (as seen below). Notebooks remain running until you explicitly shut them down; closing the notebook’s page is not sufficient.n”,
“n”,
“n”,
“![Jupyter dashboard showing one notebook with a running kernel](images/dashboard_files_tab_run.png)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“To shutdown, delete, duplicate, or rename a notebook check the checkbox next to it and an array of controls will appear at the top of the notebook list (as seen below).  You can also use the same operations on directories and files when applicable.n”,
“n”,
“![Buttons: Duplicate, rename, shutdown, delete, new, refresh](images/dashboard_files_tab_btns.png)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“To see all of your running notebooks along with their directories, click on the "Running" tab:n”,
“n”,
“![Jupyter dashboard running tab](images/dashboard_running_tab.png)n”,
“n”,
“This view provides a convenient way to track notebooks that you start as you navigate the file system in a long running notebook server.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Overview of the Notebook UI”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“If you create a new notebook or open an existing one, you will be taken to the notebook user interface (UI). This UI allows you to run code and author notebook documents interactively. The notebook UI has the following main areas:n”,
“n”,
“* Menun”,
“* Toolbarn”,
“* Notebook area and cellsn”,
“n”,
“The notebook has an interactive tour of these elements that can be started in the "Help:User Interface Tour" menu item.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Modal editor”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Starting with IPython 2.0, the Jupyter Notebook has a modal user interface. This means that the keyboard does different things depending on which mode the Notebook is in. There are two modes: edit mode and command mode.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Edit mode”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Edit mode is indicated by a green cell border and a prompt showing in the editor area:n”,
“n”,
“![Jupyter cell with green border](images/edit_mode.png)n”,
“n”,
“When a cell is in edit mode, you can type into the cell, like a normal text editor.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“<div class="alert alert-success">n”,
“Enter edit mode by pressing Enter or using the mouse to click on a cell’s editor area.n”,
“</div>”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Command mode”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Command mode is indicated by a grey cell border with a blue left margin:n”,
“n”,
“![Jupyter cell with blue & grey border](images/command_mode.png)n”,
“n”,
“When you are in command mode, you are able to edit the notebook as a whole, but not type into individual cells. Most importantly, in command mode, the keyboard is mapped to a set of shortcuts that let you perform notebook and cell actions efficiently. For example, if you are in command mode and you press c, you will copy the current cell - no modifier is needed.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“<div class="alert alert-error">n”,
“Don’t try to type into a cell in command mode; unexpected things will happen!n”,
“</div>”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“<div class="alert alert-success">n”,
“Enter command mode by pressing Esc or using the mouse to click outside a cell’s editor area.n”,
“</div>”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Mouse navigation”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“All navigation and actions in the Notebook are available using the mouse through the menubar and toolbar, which are both above the main Notebook area:n”,
“n”,
“![Jupyter notebook menus and toolbar](images/menubar_toolbar.png)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The first idea of mouse based navigation is that cells can be selected by clicking on them. The currently selected cell gets a grey or green border depending on whether the notebook is in edit or command mode. If you click inside a cell’s editor area, you will enter edit mode. If you click on the prompt or output area of a cell you will enter command mode.n”,
“n”,
“If you are running this notebook in a live session (not on http://nbviewer.jupyter.org) try selecting different cells and going between edit and command mode. Try typing into a cell.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The second idea of mouse based navigation is that cell actions usually apply to the currently selected cell. Thus if you want to run the code in a cell, you would select it and click the <button class=’btn btn-default btn-xs’><i class="fa fa-play icon-step-forward"></i></button> button in the toolbar or the "Cell:Run" menu item. Similarly, to copy a cell you would select it and click the <button class=’btn btn-default btn-xs’><i class="fa fa-copy icon-copy"></i></button> button in the toolbar or the "Edit:Copy" menu item. With this simple pattern, you should be able to do most everything you need with the mouse.n”,
“n”,
“Markdown cells have one other state that can be modified with the mouse. These cells can either be rendered or unrendered. When they are rendered, you will see a nice formatted representation of the cell’s contents. When they are unrendered, you will see the raw text source of the cell. To render the selected cell with the mouse, click the <button class=’btn btn-default btn-xs’><i class="fa fa-play icon-step-forward"></i></button> button in the toolbar or the "Cell:Run" menu item. To unrender the selected cell, double click on the cell.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Keyboard Navigation”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The modal user interface of the Jupyter Notebook has been optimized for efficient keyboard usage. This is made possible by having two different sets of keyboard shortcuts: one set that is active in edit mode and another in command mode.n”,
“n”,
“The most important keyboard shortcuts are Enter, which enters edit mode, and Esc, which enters command mode.n”,
“n”,
“In edit mode, most of the keyboard is dedicated to typing into the cell’s editor. Thus, in edit mode there are relatively few shortcuts.  In command mode, the entire keyboard is available for shortcuts, so there are many more.  The Help->`Keyboard Shortcuts` dialog lists the available shortcuts.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“We recommend learning the command mode shortcuts in the following rough order:n”,
“n”,
“1. Basic navigation: enter, shift-enter, up/k, down/jn”,
“2. Saving the notebook: sn”,
“2. Change Cell types: y, m, 1-6, tn”,
“3. Cell creation: a, bn”,
“4. Cell editing: x, c, v, d, zn”,
“5. Kernel operations: i, 0 (press twice)”




]




}





],
“metadata”: {



	“kernelspec”: {
	“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”





},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.5.2”




}




},
“nbformat”: 4,
“nbformat_minor”: 1





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Running Code”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“First and foremost, the Jupyter Notebook is an interactive environment for writing and running code. The notebook is capable of running code in a wide range of languages. However, each notebook is associated with a single kernel.  This notebook is associated with the IPython kernel, therefore runs Python code.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Code cells allow you to enter and run code”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Run a code cell using Shift-Enter or pressing the <button class=’btn btn-default btn-xs’><i class="icon-step-forward fa fa-play"></i></button> button in the toolbar above:”




]




},
{


“cell_type”: “code”,
“execution_count”: 2,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“a = 10”




]




},
{


“cell_type”: “code”,
“execution_count”: 3,
“metadata”: {


“collapsed”: false




},
“outputs”: [



	{
	“name”: “stdout”,
“output_type”: “stream”,
“text”: [


“10n”




]





}




],
“source”: [


“print(a)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“There are two other keyboard shortcuts for running code:n”,
“n”,
“* Alt-Enter runs the current cell and inserts a new one below.n”,
“* Ctrl-Enter run the current cell and enters command mode.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Managing the Kernel”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Code is run in a separate process called the Kernel.  The Kernel can be interrupted or restarted.  Try running the following cell and then hit the <button class=’btn btn-default btn-xs’><i class=’icon-stop fa fa-stop’></i></button> button in the toolbar above.”




]




},
{


“cell_type”: “code”,
“execution_count”: 4,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“import timen”,
“time.sleep(10)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“If the Kernel dies you will be prompted to restart it. Here we call the low-level system libc.time routine with the wrong argument vian”,
“ctypes to segfault the Python interpreter:”




]




},
{


“cell_type”: “code”,
“execution_count”: 5,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“import sysn”,
“from ctypes import CDLLn”,
“# This will crash a Linux or Mac systemn”,
“# equivalent calls can be made on Windowsn”,
“n”,
“# Uncomment these lines if you would like to see the segfaultn”,
“n”,
“# dll = ‘dylib’ if sys.platform == ‘darwin’ else ‘so.6’n”,
“# libc = CDLL("libc.%s" % dll) n”,
“# libc.time(-1)  # BOOM!!”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Cell menu”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The "Cell" menu has a number of menu items for running code in different ways. These includes:n”,
“n”,
“* Run and Select Belown”,
“* Run and Insert Belown”,
“* Run Alln”,
“* Run All Aboven”,
“* Run All Below”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Restarting the kernels”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The kernel maintains the state of a notebook’s computations. You can reset this state by restarting the kernel. This is done by clicking on the <button class=’btn btn-default btn-xs’><i class=’fa fa-repeat icon-repeat’></i></button> in the toolbar above.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## sys.stdout and sys.stderr”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The stdout and stderr streams are displayed as text in the output area.”




]




},
{


“cell_type”: “code”,
“execution_count”: 6,
“metadata”: {


“collapsed”: false




},
“outputs”: [



	{
	“name”: “stdout”,
“output_type”: “stream”,
“text”: [


“hi, stdoutn”




]





}




],
“source”: [


“print("hi, stdout")”




]




},
{


“cell_type”: “code”,
“execution_count”: 7,
“metadata”: {


“collapsed”: false




},
“outputs”: [



	{
	“name”: “stderr”,
“output_type”: “stream”,
“text”: [


“hi, stderrn”




]





}




],
“source”: [


“from __future__ import print_functionn”,
“print(‘hi, stderr’, file=sys.stderr)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Output is asynchronous”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“All output is displayed asynchronously as it is generated in the Kernel. If you execute the next cell, you will see the output one piece at a time, not all at the end.”




]




},
{


“cell_type”: “code”,
“execution_count”: 8,
“metadata”: {


“collapsed”: false




},
“outputs”: [



	{
	“name”: “stdout”,
“output_type”: “stream”,
“text”: [


“0n”,
“1n”,
“2n”,
“3n”,
“4n”,
“5n”,
“6n”,
“7n”




]





}




],
“source”: [


“import time, sysn”,
“for i in range(8):n”,
”    print(i)n”,
”    time.sleep(0.5)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Large outputs”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“To better handle large outputs, the output area can be collapsed. Run the following cell and then single- or double- click on the active area to the left of the output:”




]




},
{


“cell_type”: “code”,
“execution_count”: 9,
“metadata”: {


“collapsed”: false




},
“outputs”: [



	{
	“name”: “stdout”,
“output_type”: “stream”,
“text”: [


“0n”,
“1n”,
“2n”,
“3n”,
“4n”,
“5n”,
“6n”,
“7n”,
“8n”,
“9n”,
“10n”,
“11n”,
“12n”,
“13n”,
“14n”,
“15n”,
“16n”,
“17n”,
“18n”,
“19n”,
“20n”,
“21n”,
“22n”,
“23n”,
“24n”,
“25n”,
“26n”,
“27n”,
“28n”,
“29n”,
“30n”,
“31n”,
“32n”,
“33n”,
“34n”,
“35n”,
“36n”,
“37n”,
“38n”,
“39n”,
“40n”,
“41n”,
“42n”,
“43n”,
“44n”,
“45n”,
“46n”,
“47n”,
“48n”,
“49n”




]





}




],
“source”: [


“for i in range(50):n”,
”    print(i)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Beyond a certain point, output will scroll automatically:”




]




},
{


“cell_type”: “code”,
“execution_count”: 10,
“metadata”: {


“collapsed”: false




},
“outputs”: [



	{
	“name”: “stdout”,
“output_type”: “stream”,
“text”: [


“0n”,
“1n”,
“3n”,
“7n”,
“15n”,
“31n”,
“63n”,
“127n”,
“255n”,
“511n”,
“1023n”,
“2047n”,
“4095n”,
“8191n”,
“16383n”,
“32767n”,
“65535n”,
“131071n”,
“262143n”,
“524287n”,
“1048575n”,
“2097151n”,
“4194303n”,
“8388607n”,
“16777215n”,
“33554431n”,
“67108863n”,
“134217727n”,
“268435455n”,
“536870911n”,
“1073741823n”,
“2147483647n”,
“4294967295n”,
“8589934591n”,
“17179869183n”,
“34359738367n”,
“68719476735n”,
“137438953471n”,
“274877906943n”,
“549755813887n”,
“1099511627775n”,
“2199023255551n”,
“4398046511103n”,
“8796093022207n”,
“17592186044415n”,
“35184372088831n”,
“70368744177663n”,
“140737488355327n”,
“281474976710655n”,
“562949953421311n”,
“1125899906842623n”,
“2251799813685247n”,
“4503599627370495n”,
“9007199254740991n”,
“18014398509481983n”,
“36028797018963967n”,
“72057594037927935n”,
“144115188075855871n”,
“288230376151711743n”,
“576460752303423487n”,
“1152921504606846975n”,
“2305843009213693951n”,
“4611686018427387903n”,
“9223372036854775807n”,
“18446744073709551615n”,
“36893488147419103231n”,
“73786976294838206463n”,
“147573952589676412927n”,
“295147905179352825855n”,
“590295810358705651711n”,
“1180591620717411303423n”,
“2361183241434822606847n”,
“4722366482869645213695n”,
“9444732965739290427391n”,
“18889465931478580854783n”,
“37778931862957161709567n”,
“75557863725914323419135n”,
“151115727451828646838271n”,
“302231454903657293676543n”,
“604462909807314587353087n”,
“1208925819614629174706175n”,
“2417851639229258349412351n”,
“4835703278458516698824703n”,
“9671406556917033397649407n”,
“19342813113834066795298815n”,
“38685626227668133590597631n”,
“77371252455336267181195263n”,
“154742504910672534362390527n”,
“309485009821345068724781055n”,
“618970019642690137449562111n”,
“1237940039285380274899124223n”,
“2475880078570760549798248447n”,
“4951760157141521099596496895n”,
“9903520314283042199192993791n”,
“19807040628566084398385987583n”,
“39614081257132168796771975167n”,
“79228162514264337593543950335n”,
“158456325028528675187087900671n”,
“316912650057057350374175801343n”,
“633825300114114700748351602687n”,
“1267650600228229401496703205375n”,
“2535301200456458802993406410751n”,
“5070602400912917605986812821503n”,
“10141204801825835211973625643007n”,
“20282409603651670423947251286015n”,
“40564819207303340847894502572031n”,
“81129638414606681695789005144063n”,
“162259276829213363391578010288127n”,
“324518553658426726783156020576255n”,
“649037107316853453566312041152511n”,
“1298074214633706907132624082305023n”,
“2596148429267413814265248164610047n”,
“5192296858534827628530496329220095n”,
“10384593717069655257060992658440191n”,
“20769187434139310514121985316880383n”,
“41538374868278621028243970633760767n”,
“83076749736557242056487941267521535n”,
“166153499473114484112975882535043071n”,
“332306998946228968225951765070086143n”,
“664613997892457936451903530140172287n”,
“1329227995784915872903807060280344575n”,
“2658455991569831745807614120560689151n”,
“5316911983139663491615228241121378303n”,
“10633823966279326983230456482242756607n”,
“21267647932558653966460912964485513215n”,
“42535295865117307932921825928971026431n”,
“85070591730234615865843651857942052863n”,
“170141183460469231731687303715884105727n”,
“340282366920938463463374607431768211455n”,
“680564733841876926926749214863536422911n”,
“1361129467683753853853498429727072845823n”,
“2722258935367507707706996859454145691647n”,
“5444517870735015415413993718908291383295n”,
“10889035741470030830827987437816582766591n”,
“21778071482940061661655974875633165533183n”,
“43556142965880123323311949751266331066367n”,
“87112285931760246646623899502532662132735n”,
“174224571863520493293247799005065324265471n”,
“348449143727040986586495598010130648530943n”,
“696898287454081973172991196020261297061887n”,
“1393796574908163946345982392040522594123775n”,
“2787593149816327892691964784081045188247551n”,
“5575186299632655785383929568162090376495103n”,
“11150372599265311570767859136324180752990207n”,
“22300745198530623141535718272648361505980415n”,
“44601490397061246283071436545296723011960831n”,
“89202980794122492566142873090593446023921663n”,
“178405961588244985132285746181186892047843327n”,
“356811923176489970264571492362373784095686655n”,
“713623846352979940529142984724747568191373311n”,
“1427247692705959881058285969449495136382746623n”,
“2854495385411919762116571938898990272765493247n”,
“5708990770823839524233143877797980545530986495n”,
“11417981541647679048466287755595961091061972991n”,
“22835963083295358096932575511191922182123945983n”,
“45671926166590716193865151022383844364247891967n”,
“91343852333181432387730302044767688728495783935n”,
“182687704666362864775460604089535377456991567871n”,
“365375409332725729550921208179070754913983135743n”,
“730750818665451459101842416358141509827966271487n”,
“1461501637330902918203684832716283019655932542975n”,
“2923003274661805836407369665432566039311865085951n”,
“5846006549323611672814739330865132078623730171903n”,
“11692013098647223345629478661730264157247460343807n”,
“23384026197294446691258957323460528314494920687615n”,
“46768052394588893382517914646921056628989841375231n”,
“93536104789177786765035829293842113257979682750463n”,
“187072209578355573530071658587684226515959365500927n”,
“374144419156711147060143317175368453031918731001855n”,
“748288838313422294120286634350736906063837462003711n”,
“1496577676626844588240573268701473812127674924007423n”,
“2993155353253689176481146537402947624255349848014847n”,
“5986310706507378352962293074805895248510699696029695n”,
“11972621413014756705924586149611790497021399392059391n”,
“23945242826029513411849172299223580994042798784118783n”,
“47890485652059026823698344598447161988085597568237567n”,
“95780971304118053647396689196894323976171195136475135n”,
“191561942608236107294793378393788647952342390272950271n”,
“383123885216472214589586756787577295904684780545900543n”,
“766247770432944429179173513575154591809369561091801087n”,
“1532495540865888858358347027150309183618739122183602175n”,
“3064991081731777716716694054300618367237478244367204351n”,
“6129982163463555433433388108601236734474956488734408703n”,
“12259964326927110866866776217202473468949912977468817407n”,
“24519928653854221733733552434404946937899825954937634815n”,
“49039857307708443467467104868809893875799651909875269631n”,
“98079714615416886934934209737619787751599303819750539263n”,
“196159429230833773869868419475239575503198607639501078527n”,
“392318858461667547739736838950479151006397215279002157055n”,
“784637716923335095479473677900958302012794430558004314111n”,
“1569275433846670190958947355801916604025588861116008628223n”,
“3138550867693340381917894711603833208051177722232017256447n”,
“6277101735386680763835789423207666416102355444464034512895n”,
“12554203470773361527671578846415332832204710888928069025791n”,
“25108406941546723055343157692830665664409421777856138051583n”,
“50216813883093446110686315385661331328818843555712276103167n”,
“100433627766186892221372630771322662657637687111424552206335n”,
“200867255532373784442745261542645325315275374222849104412671n”,
“401734511064747568885490523085290650630550748445698208825343n”,
“803469022129495137770981046170581301261101496891396417650687n”,
“1606938044258990275541962092341162602522202993782792835301375n”,
“3213876088517980551083924184682325205044405987565585670602751n”,
“6427752177035961102167848369364650410088811975131171341205503n”,
“12855504354071922204335696738729300820177623950262342682411007n”,
“25711008708143844408671393477458601640355247900524685364822015n”,
“51422017416287688817342786954917203280710495801049370729644031n”,
“102844034832575377634685573909834406561420991602098741459288063n”,
“205688069665150755269371147819668813122841983204197482918576127n”,
“411376139330301510538742295639337626245683966408394965837152255n”,
“822752278660603021077484591278675252491367932816789931674304511n”,
“1645504557321206042154969182557350504982735865633579863348609023n”,
“3291009114642412084309938365114701009965471731267159726697218047n”,
“6582018229284824168619876730229402019930943462534319453394436095n”,
“13164036458569648337239753460458804039861886925068638906788872191n”,
“26328072917139296674479506920917608079723773850137277813577744383n”,
“52656145834278593348959013841835216159447547700274555627155488767n”,
“105312291668557186697918027683670432318895095400549111254310977535n”,
“210624583337114373395836055367340864637790190801098222508621955071n”,
“421249166674228746791672110734681729275580381602196445017243910143n”,
“842498333348457493583344221469363458551160763204392890034487820287n”,
“1684996666696914987166688442938726917102321526408785780068975640575n”,
“3369993333393829974333376885877453834204643052817571560137951281151n”,
“6739986666787659948666753771754907668409286105635143120275902562303n”,
“13479973333575319897333507543509815336818572211270286240551805124607n”,
“26959946667150639794667015087019630673637144422540572481103610249215n”,
“53919893334301279589334030174039261347274288845081144962207220498431n”,
“107839786668602559178668060348078522694548577690162289924414440996863n”,
“215679573337205118357336120696157045389097155380324579848828881993727n”,
“431359146674410236714672241392314090778194310760649159697657763987455n”,
“862718293348820473429344482784628181556388621521298319395315527974911n”,
“1725436586697640946858688965569256363112777243042596638790631055949823n”,
“3450873173395281893717377931138512726225554486085193277581262111899647n”,
“6901746346790563787434755862277025452451108972170386555162524223799295n”,
“13803492693581127574869511724554050904902217944340773110325048447598591n”,
“27606985387162255149739023449108101809804435888681546220650096895197183n”,
“55213970774324510299478046898216203619608871777363092441300193790394367n”,
“110427941548649020598956093796432407239217743554726184882600387580788735n”,
“220855883097298041197912187592864814478435487109452369765200775161577471n”,
“441711766194596082395824375185729628956870974218904739530401550323154943n”,
“883423532389192164791648750371459257913741948437809479060803100646309887n”,
“1766847064778384329583297500742918515827483896875618958121606201292619775n”,
“3533694129556768659166595001485837031654967793751237916243212402585239551n”,
“7067388259113537318333190002971674063309935587502475832486424805170479103n”,
“14134776518227074636666380005943348126619871175004951664972849610340958207n”,
“28269553036454149273332760011886696253239742350009903329945699220681916415n”,
“56539106072908298546665520023773392506479484700019806659891398441363832831n”,
“113078212145816597093331040047546785012958969400039613319782796882727665663n”,
“226156424291633194186662080095093570025917938800079226639565593765455331327n”,
“452312848583266388373324160190187140051835877600158453279131187530910662655n”,
“904625697166532776746648320380374280103671755200316906558262375061821325311n”,
“1809251394333065553493296640760748560207343510400633813116524750123642650623n”,
“3618502788666131106986593281521497120414687020801267626233049500247285301247n”,
“7237005577332262213973186563042994240829374041602535252466099000494570602495n”,
“14474011154664524427946373126085988481658748083205070504932198000989141204991n”,
“28948022309329048855892746252171976963317496166410141009864396001978282409983n”,
“57896044618658097711785492504343953926634992332820282019728792003956564819967n”,
“115792089237316195423570985008687907853269984665640564039457584007913129639935n”,
“231584178474632390847141970017375815706539969331281128078915168015826259279871n”,
“463168356949264781694283940034751631413079938662562256157830336031652518559743n”,
“926336713898529563388567880069503262826159877325124512315660672063305037119487n”,
“1852673427797059126777135760139006525652319754650249024631321344126610074238975n”,
“3705346855594118253554271520278013051304639509300498049262642688253220148477951n”,
“7410693711188236507108543040556026102609279018600996098525285376506440296955903n”,
“14821387422376473014217086081112052205218558037201992197050570753012880593911807n”,
“29642774844752946028434172162224104410437116074403984394101141506025761187823615n”,
“59285549689505892056868344324448208820874232148807968788202283012051522375647231n”,
“118571099379011784113736688648896417641748464297615937576404566024103044751294463n”,
“237142198758023568227473377297792835283496928595231875152809132048206089502588927n”,
“474284397516047136454946754595585670566993857190463750305618264096412179005177855n”,
“948568795032094272909893509191171341133987714380927500611236528192824358010355711n”,
“1897137590064188545819787018382342682267975428761855001222473056385648716020711423n”,
“3794275180128377091639574036764685364535950857523710002444946112771297432041422847n”,
“7588550360256754183279148073529370729071901715047420004889892225542594864082845695n”,
“15177100720513508366558296147058741458143803430094840009779784451085189728165691391n”,
“30354201441027016733116592294117482916287606860189680019559568902170379456331382783n”,
“60708402882054033466233184588234965832575213720379360039119137804340758912662765567n”,
“121416805764108066932466369176469931665150427440758720078238275608681517825325531135n”,
“242833611528216133864932738352939863330300854881517440156476551217363035650651062271n”,
“485667223056432267729865476705879726660601709763034880312953102434726071301302124543n”,
“971334446112864535459730953411759453321203419526069760625906204869452142602604249087n”,
“1942668892225729070919461906823518906642406839052139521251812409738904285205208498175n”,
“3885337784451458141838923813647037813284813678104279042503624819477808570410416996351n”,
“7770675568902916283677847627294075626569627356208558085007249638955617140820833992703n”,
“15541351137805832567355695254588151253139254712417116170014499277911234281641667985407n”,
“31082702275611665134711390509176302506278509424834232340028998555822468563283335970815n”,
“62165404551223330269422781018352605012557018849668464680057997111644937126566671941631n”,
“124330809102446660538845562036705210025114037699336929360115994223289874253133343883263n”,
“248661618204893321077691124073410420050228075398673858720231988446579748506266687766527n”,
“497323236409786642155382248146820840100456150797347717440463976893159497012533375533055n”,
“994646472819573284310764496293641680200912301594695434880927953786318994025066751066111n”,
“1989292945639146568621528992587283360401824603189390869761855907572637988050133502132223n”,
“3978585891278293137243057985174566720803649206378781739523711815145275976100267004264447n”,
“7957171782556586274486115970349133441607298412757563479047423630290551952200534008528895n”,
“15914343565113172548972231940698266883214596825515126958094847260581103904401068017057791n”,
“31828687130226345097944463881396533766429193651030253916189694521162207808802136034115583n”,
“63657374260452690195888927762793067532858387302060507832379389042324415617604272068231167n”,
“127314748520905380391777855525586135065716774604121015664758778084648831235208544136462335n”,
“254629497041810760783555711051172270131433549208242031329517556169297662470417088272924671n”,
“509258994083621521567111422102344540262867098416484062659035112338595324940834176545849343n”,
“1018517988167243043134222844204689080525734196832968125318070224677190649881668353091698687n”,
“2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397375n”,
“4074071952668972172536891376818756322102936787331872501272280898708762599526673412366794751n”,
“8148143905337944345073782753637512644205873574663745002544561797417525199053346824733589503n”,
“16296287810675888690147565507275025288411747149327490005089123594835050398106693649467179007n”,
“32592575621351777380295131014550050576823494298654980010178247189670100796213387298934358015n”,
“65185151242703554760590262029100101153646988597309960020356494379340201592426774597868716031n”,
“130370302485407109521180524058200202307293977194619920040712988758680403184853549195737432063n”,
“260740604970814219042361048116400404614587954389239840081425977517360806369707098391474864127n”,
“521481209941628438084722096232800809229175908778479680162851955034721612739414196782949728255n”,
“1042962419883256876169444192465601618458351817556959360325703910069443225478828393565899456511n”,
“2085924839766513752338888384931203236916703635113918720651407820138886450957656787131798913023n”,
“4171849679533027504677776769862406473833407270227837441302815640277772901915313574263597826047n”,
“8343699359066055009355553539724812947666814540455674882605631280555545803830627148527195652095n”,
“16687398718132110018711107079449625895333629080911349765211262561111091607661254297054391304191n”,
“33374797436264220037422214158899251790667258161822699530422525122222183215322508594108782608383n”,
“66749594872528440074844428317798503581334516323645399060845050244444366430645017188217565216767n”,
“133499189745056880149688856635597007162669032647290798121690100488888732861290034376435130433535n”,
“266998379490113760299377713271194014325338065294581596243380200977777465722580068752870260867071n”,
“533996758980227520598755426542388028650676130589163192486760401955554931445160137505740521734143n”,
“1067993517960455041197510853084776057301352261178326384973520803911109862890320275011481043468287n”,
“2135987035920910082395021706169552114602704522356652769947041607822219725780640550022962086936575n”,
“4271974071841820164790043412339104229205409044713305539894083215644439451561281100045924173873151n”,
“8543948143683640329580086824678208458410818089426611079788166431288878903122562200091848347746303n”,
“17087896287367280659160173649356416916821636178853222159576332862577757806245124400183696695492607n”,
“34175792574734561318320347298712833833643272357706444319152665725155515612490248800367393390985215n”,
“68351585149469122636640694597425667667286544715412888638305331450311031224980497600734786781970431n”,
“136703170298938245273281389194851335334573089430825777276610662900622062449960995201469573563940863n”,
“273406340597876490546562778389702670669146178861651554553221325801244124899921990402939147127881727n”,
“546812681195752981093125556779405341338292357723303109106442651602488249799843980805878294255763455n”,
“1093625362391505962186251113558810682676584715446606218212885303204976499599687961611756588511526911n”,
“2187250724783011924372502227117621365353169430893212436425770606409952999199375923223513177023053823n”,
“4374501449566023848745004454235242730706338861786424872851541212819905998398751846447026354046107647n”,
“8749002899132047697490008908470485461412677723572849745703082425639811996797503692894052708092215295n”,
“17498005798264095394980017816940970922825355447145699491406164851279623993595007385788105416184430591n”,
“34996011596528190789960035633881941845650710894291398982812329702559247987190014771576210832368861183n”,
“69992023193056381579920071267763883691301421788582797965624659405118495974380029543152421664737722367n”,
“139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444735n”,
“279968092772225526319680285071055534765205687154331191862498637620473983897520118172609686658950889471n”,
“559936185544451052639360570142111069530411374308662383724997275240947967795040236345219373317901778943n”,
“1119872371088902105278721140284222139060822748617324767449994550481895935590080472690438746635803557887n”,
“2239744742177804210557442280568444278121645497234649534899989100963791871180160945380877493271607115775n”,
“4479489484355608421114884561136888556243290994469299069799978201927583742360321890761754986543214231551n”,
“8958978968711216842229769122273777112486581988938598139599956403855167484720643781523509973086428463103n”,
“17917957937422433684459538244547554224973163977877196279199912807710334969441287563047019946172856926207n”,
“35835915874844867368919076489095108449946327955754392558399825615420669938882575126094039892345713852415n”,
“71671831749689734737838152978190216899892655911508785116799651230841339877765150252188079784691427704831n”,
“143343663499379469475676305956380433799785311823017570233599302461682679755530300504376159569382855409663n”,
“286687326998758938951352611912760867599570623646035140467198604923365359511060601008752319138765710819327n”,
“573374653997517877902705223825521735199141247292070280934397209846730719022121202017504638277531421638655n”,
“1146749307995035755805410447651043470398282494584140561868794419693461438044242404035009276555062843277311n”,
“2293498615990071511610820895302086940796564989168281123737588839386922876088484808070018553110125686554623n”,
“4586997231980143023221641790604173881593129978336562247475177678773845752176969616140037106220251373109247n”,
“9173994463960286046443283581208347763186259956673124494950355357547691504353939232280074212440502746218495n”,
“18347988927920572092886567162416695526372519913346248989900710715095383008707878464560148424881005492436991n”,
“36695977855841144185773134324833391052745039826692497979801421430190766017415756929120296849762010984873983n”,
“73391955711682288371546268649666782105490079653384995959602842860381532034831513858240593699524021969747967n”,
“146783911423364576743092537299333564210980159306769991919205685720763064069663027716481187399048043939495935n”,
“293567822846729153486185074598667128421960318613539983838411371441526128139326055432962374798096087878991871n”,
“587135645693458306972370149197334256843920637227079967676822742883052256278652110865924749596192175757983743n”,
“1174271291386916613944740298394668513687841274454159935353645485766104512557304221731849499192384351515967487n”,
“2348542582773833227889480596789337027375682548908319870707290971532209025114608443463698998384768703031934975n”,
“4697085165547666455778961193578674054751365097816639741414581943064418050229216886927397996769537406063869951n”,
“9394170331095332911557922387157348109502730195633279482829163886128836100458433773854795993539074812127739903n”,
“18788340662190665823115844774314696219005460391266558965658327772257672200916867547709591987078149624255479807n”,
“37576681324381331646231689548629392438010920782533117931316655544515344401833735095419183974156299248510959615n”,
“75153362648762663292463379097258784876021841565066235862633311089030688803667470190838367948312598497021919231n”,
“150306725297525326584926758194517569752043683130132471725266622178061377607334940381676735896625196994043838463n”,
“300613450595050653169853516389035139504087366260264943450533244356122755214669880763353471793250393988087676927n”,
“601226901190101306339707032778070279008174732520529886901066488712245510429339761526706943586500787976175353855n”,
“1202453802380202612679414065556140558016349465041059773802132977424491020858679523053413887173001575952350707711n”,
“2404907604760405225358828131112281116032698930082119547604265954848982041717359046106827774346003151904701415423n”,
“4809815209520810450717656262224562232065397860164239095208531909697964083434718092213655548692006303809402830847n”,
“9619630419041620901435312524449124464130795720328478190417063819395928166869436184427311097384012607618805661695n”,
“19239260838083241802870625048898248928261591440656956380834127638791856333738872368854622194768025215237611323391n”,
“38478521676166483605741250097796497856523182881313912761668255277583712667477744737709244389536050430475222646783n”,
“76957043352332967211482500195592995713046365762627825523336510555167425334955489475418488779072100860950445293567n”,
“153914086704665934422965000391185991426092731525255651046673021110334850669910978950836977558144201721900890587135n”,
“307828173409331868845930000782371982852185463050511302093346042220669701339821957901673955116288403443801781174271n”,
“615656346818663737691860001564743965704370926101022604186692084441339402679643915803347910232576806887603562348543n”,
“1231312693637327475383720003129487931408741852202045208373384168882678805359287831606695820465153613775207124697087n”,
“2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394175n”,
“4925250774549309901534880012517951725634967408808180833493536675530715221437151326426783281860614455100828498788351n”,
“9850501549098619803069760025035903451269934817616361666987073351061430442874302652853566563721228910201656997576703n”,
“19701003098197239606139520050071806902539869635232723333974146702122860885748605305707133127442457820403313995153407n”,
“39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306815n”,
“78804012392788958424558080200287227610159478540930893335896586808491443542994421222828532509769831281613255980613631n”,
“157608024785577916849116160400574455220318957081861786671793173616982887085988842445657065019539662563226511961227263n”,
“315216049571155833698232320801148910440637914163723573343586347233965774171977684891314130039079325126453023922454527n”,
“630432099142311667396464641602297820881275828327447146687172694467931548343955369782628260078158650252906047844909055n”,
“1260864198284623334792929283204595641762551656654894293374345388935863096687910739565256520156317300505812095689818111n”,
“2521728396569246669585858566409191283525103313309788586748690777871726193375821479130513040312634601011624191379636223n”,
“5043456793138493339171717132818382567050206626619577173497381555743452386751642958261026080625269202023248382759272447n”,
“10086913586276986678343434265636765134100413253239154346994763111486904773503285916522052161250538404046496765518544895n”,
“20173827172553973356686868531273530268200826506478308693989526222973809547006571833044104322501076808092993531037089791n”,
“40347654345107946713373737062547060536401653012956617387979052445947619094013143666088208645002153616185987062074179583n”,
“80695308690215893426747474125094121072803306025913234775958104891895238188026287332176417290004307232371974124148359167n”,
“161390617380431786853494948250188242145606612051826469551916209783790476376052574664352834580008614464743948248296718335n”,
“322781234760863573706989896500376484291213224103652939103832419567580952752105149328705669160017228929487896496593436671n”,
“645562469521727147413979793000752968582426448207305878207664839135161905504210298657411338320034457858975792993186873343n”,
“1291124939043454294827959586001505937164852896414611756415329678270323811008420597314822676640068915717951585986373746687n”,
“2582249878086908589655919172003011874329705792829223512830659356540647622016841194629645353280137831435903171972747493375n”,
“5164499756173817179311838344006023748659411585658447025661318713081295244033682389259290706560275662871806343945494986751n”,
“10328999512347634358623676688012047497318823171316894051322637426162590488067364778518581413120551325743612687890989973503n”,
“20657999024695268717247353376024094994637646342633788102645274852325180976134729557037162826241102651487225375781979947007n”,
“41315998049390537434494706752048189989275292685267576205290549704650361952269459114074325652482205302974450751563959894015n”,
“82631996098781074868989413504096379978550585370535152410581099409300723904538918228148651304964410605948901503127919788031n”,
“165263992197562149737978827008192759957101170741070304821162198818601447809077836456297302609928821211897803006255839576063n”,
“330527984395124299475957654016385519914202341482140609642324397637202895618155672912594605219857642423795606012511679152127n”,
“661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304255n”,
“1322111937580497197903830616065542079656809365928562438569297590548811582472622691650378420879430569695182424050046716608511n”,
“2644223875160994395807661232131084159313618731857124877138595181097623164945245383300756841758861139390364848100093433217023n”,
“5288447750321988791615322464262168318627237463714249754277190362195246329890490766601513683517722278780729696200186866434047n”,
“10576895500643977583230644928524336637254474927428499508554380724390492659780981533203027367035444557561459392400373732868095n”,
“21153791001287955166461289857048673274508949854856999017108761448780985319561963066406054734070889115122918784800747465736191n”,
“42307582002575910332922579714097346549017899709713998034217522897561970639123926132812109468141778230245837569601494931472383n”,
“84615164005151820665845159428194693098035799419427996068435045795123941278247852265624218936283556460491675139202989862944767n”,
“169230328010303641331690318856389386196071598838855992136870091590247882556495704531248437872567112920983350278405979725889535n”,
“338460656020607282663380637712778772392143197677711984273740183180495765112991409062496875745134225841966700556811959451779071n”,
“676921312041214565326761275425557544784286395355423968547480366360991530225982818124993751490268451683933401113623918903558143n”,
“1353842624082429130653522550851115089568572790710847937094960732721983060451965636249987502980536903367866802227247837807116287n”,
“2707685248164858261307045101702230179137145581421695874189921465443966120903931272499975005961073806735733604454495675614232575n”,
“5415370496329716522614090203404460358274291162843391748379842930887932241807862544999950011922147613471467208908991351228465151n”,
“10830740992659433045228180406808920716548582325686783496759685861775864483615725089999900023844295226942934417817982702456930303n”,
“21661481985318866090456360813617841433097164651373566993519371723551728967231450179999800047688590453885868835635965404913860607n”,
“43322963970637732180912721627235682866194329302747133987038743447103457934462900359999600095377180907771737671271930809827721215n”,
“86645927941275464361825443254471365732388658605494267974077486894206915868925800719999200190754361815543475342543861619655442431n”,
“173291855882550928723650886508942731464777317210988535948154973788413831737851601439998400381508723631086950685087723239310884863n”,
“346583711765101857447301773017885462929554634421977071896309947576827663475703202879996800763017447262173901370175446478621769727n”,
“693167423530203714894603546035770925859109268843954143792619895153655326951406405759993601526034894524347802740350892957243539455n”,
“1386334847060407429789207092071541851718218537687908287585239790307310653902812811519987203052069789048695605480701785914487078911n”,
“2772669694120814859578414184143083703436437075375816575170479580614621307805625623039974406104139578097391210961403571828974157823n”,
“5545339388241629719156828368286167406872874150751633150340959161229242615611251246079948812208279156194782421922807143657948315647n”,
“11090678776483259438313656736572334813745748301503266300681918322458485231222502492159897624416558312389564843845614287315896631295n”,
“22181357552966518876627313473144669627491496603006532601363836644916970462445004984319795248833116624779129687691228574631793262591n”,
“44362715105933037753254626946289339254982993206013065202727673289833940924890009968639590497666233249558259375382457149263586525183n”,
“88725430211866075506509253892578678509965986412026130405455346579667881849780019937279180995332466499116518750764914298527173050367n”,
“177450860423732151013018507785157357019931972824052260810910693159335763699560039874558361990664932998233037501529828597054346100735n”,
“354901720847464302026037015570314714039863945648104521621821386318671527399120079749116723981329865996466075003059657194108692201471n”,
“709803441694928604052074031140629428079727891296209043243642772637343054798240159498233447962659731992932150006119314388217384402943n”,
“1419606883389857208104148062281258856159455782592418086487285545274686109596480318996466895925319463985864300012238628776434768805887n”,
“2839213766779714416208296124562517712318911565184836172974571090549372219192960637992933791850638927971728600024477257552869537611775n”,
“5678427533559428832416592249125035424637823130369672345949142181098744438385921275985867583701277855943457200048954515105739075223551n”,
“11356855067118857664833184498250070849275646260739344691898284362197488876771842551971735167402555711886914400097909030211478150447103n”,
“22713710134237715329666368996500141698551292521478689383796568724394977753543685103943470334805111423773828800195818060422956300894207n”,
“45427420268475430659332737993000283397102585042957378767593137448789955507087370207886940669610222847547657600391636120845912601788415n”,
“90854840536950861318665475986000566794205170085914757535186274897579911014174740415773881339220445695095315200783272241691825203576831n”,
“181709681073901722637330951972001133588410340171829515070372549795159822028349480831547762678440891390190630401566544483383650407153663n”,
“363419362147803445274661903944002267176820680343659030140745099590319644056698961663095525356881782780381260803133088966767300814307327n”,
“726838724295606890549323807888004534353641360687318060281490199180639288113397923326191050713763565560762521606266177933534601628614655n”,
“1453677448591213781098647615776009068707282721374636120562980398361278576226795846652382101427527131121525043212532355867069203257229311n”,
“2907354897182427562197295231552018137414565442749272241125960796722557152453591693304764202855054262243050086425064711734138406514458623n”,
“5814709794364855124394590463104036274829130885498544482251921593445114304907183386609528405710108524486100172850129423468276813028917247n”,
“11629419588729710248789180926208072549658261770997088964503843186890228609814366773219056811420217048972200345700258846936553626057834495n”,
“23258839177459420497578361852416145099316523541994177929007686373780457219628733546438113622840434097944400691400517693873107252115668991n”,
“46517678354918840995156723704832290198633047083988355858015372747560914439257467092876227245680868195888801382801035387746214504231337983n”,
“93035356709837681990313447409664580397266094167976711716030745495121828878514934185752454491361736391777602765602070775492429008462675967n”,
“186070713419675363980626894819329160794532188335953423432061490990243657757029868371504908982723472783555205531204141550984858016925351935n”,
“372141426839350727961253789638658321589064376671906846864122981980487315514059736743009817965446945567110411062408283101969716033850703871n”,
“744282853678701455922507579277316643178128753343813693728245963960974631028119473486019635930893891134220822124816566203939432067701407743n”,
“1488565707357402911845015158554633286356257506687627387456491927921949262056238946972039271861787782268441644249633132407878864135402815487n”,
“2977131414714805823690030317109266572712515013375254774912983855843898524112477893944078543723575564536883288499266264815757728270805630975n”,
“5954262829429611647380060634218533145425030026750509549825967711687797048224955787888157087447151129073766576998532529631515456541611261951n”,
“11908525658859223294760121268437066290850060053501019099651935423375594096449911575776314174894302258147533153997065059263030913083222523903n”,
“23817051317718446589520242536874132581700120107002038199303870846751188192899823151552628349788604516295066307994130118526061826166445047807n”,
“47634102635436893179040485073748265163400240214004076398607741693502376385799646303105256699577209032590132615988260237052123652332890095615n”,
“95268205270873786358080970147496530326800480428008152797215483387004752771599292606210513399154418065180265231976520474104247304665780191231n”,
“190536410541747572716161940294993060653600960856016305594430966774009505543198585212421026798308836130360530463953040948208494609331560382463n”,
“381072821083495145432323880589986121307201921712032611188861933548019011086397170424842053596617672260721060927906081896416989218663120764927n”,
“762145642166990290864647761179972242614403843424065222377723867096038022172794340849684107193235344521442121855812163792833978437326241529855n”,
“1524291284333980581729295522359944485228807686848130444755447734192076044345588681699368214386470689042884243711624327585667956874652483059711n”,
“3048582568667961163458591044719888970457615373696260889510895468384152088691177363398736428772941378085768487423248655171335913749304966119423n”,
“6097165137335922326917182089439777940915230747392521779021790936768304177382354726797472857545882756171536974846497310342671827498609932238847n”,
“12194330274671844653834364178879555881830461494785043558043581873536608354764709453594945715091765512343073949692994620685343654997219864477695n”,
“24388660549343689307668728357759111763660922989570087116087163747073216709529418907189891430183531024686147899385989241370687309994439728955391n”,
“48777321098687378615337456715518223527321845979140174232174327494146433419058837814379782860367062049372295798771978482741374619988879457910783n”,
“97554642197374757230674913431036447054643691958280348464348654988292866838117675628759565720734124098744591597543956965482749239977758915821567n”,
“195109284394749514461349826862072894109287383916560696928697309976585733676235351257519131441468248197489183195087913930965498479955517831643135n”,
“390218568789499028922699653724145788218574767833121393857394619953171467352470702515038262882936496394978366390175827861930996959911035663286271n”,
“780437137578998057845399307448291576437149535666242787714789239906342934704941405030076525765872992789956732780351655723861993919822071326572543n”,
“1560874275157996115690798614896583152874299071332485575429578479812685869409882810060153051531745985579913465560703311447723987839644142653145087n”,
“3121748550315992231381597229793166305748598142664971150859156959625371738819765620120306103063491971159826931121406622895447975679288285306290175n”,
“6243497100631984462763194459586332611497196285329942301718313919250743477639531240240612206126983942319653862242813245790895951358576570612580351n”,
“12486994201263968925526388919172665222994392570659884603436627838501486955279062480481224412253967884639307724485626491581791902717153141225160703n”,
“24973988402527937851052777838345330445988785141319769206873255677002973910558124960962448824507935769278615448971252983163583805434306282450321407n”,
“49947976805055875702105555676690660891977570282639538413746511354005947821116249921924897649015871538557230897942505966327167610868612564900642815n”,
“99895953610111751404211111353381321783955140565279076827493022708011895642232499843849795298031743077114461795885011932654335221737225129801285631n”,
“199791907220223502808422222706762643567910281130558153654986045416023791284464999687699590596063486154228923591770023865308670443474450259602571263n”,
“399583814440447005616844445413525287135820562261116307309972090832047582568929999375399181192126972308457847183540047730617340886948900519205142527n”,
“799167628880894011233688890827050574271641124522232614619944181664095165137859998750798362384253944616915694367080095461234681773897801038410285055n”,
“1598335257761788022467377781654101148543282249044465229239888363328190330275719997501596724768507889233831388734160190922469363547795602076820570111n”,
“3196670515523576044934755563308202297086564498088930458479776726656380660551439995003193449537015778467662777468320381844938727095591204153641140223n”,
“6393341031047152089869511126616404594173128996177860916959553453312761321102879990006386899074031556935325554936640763689877454191182408307282280447n”,
“12786682062094304179739022253232809188346257992355721833919106906625522642205759980012773798148063113870651109873281527379754908382364816614564560895n”,
“25573364124188608359478044506465618376692515984711443667838213813251045284411519960025547596296126227741302219746563054759509816764729633229129121791n”,
“51146728248377216718956089012931236753385031969422887335676427626502090568823039920051095192592252455482604439493126109519019633529459266458258243583n”,
“102293456496754433437912178025862473506770063938845774671352855253004181137646079840102190385184504910965208878986252219038039267058918532916516487167n”,
“204586912993508866875824356051724947013540127877691549342705710506008362275292159680204380770369009821930417757972504438076078534117837065833032974335n”,
“409173825987017733751648712103449894027080255755383098685411421012016724550584319360408761540738019643860835515945008876152157068235674131666065948671n”,
“818347651974035467503297424206899788054160511510766197370822842024033449101168638720817523081476039287721671031890017752304314136471348263332131897343n”,
“1636695303948070935006594848413799576108321023021532394741645684048066898202337277441635046162952078575443342063780035504608628272942696526664263794687n”




]





}




],
“source”: [


“for i in range(500):n”,
”    print(2**i - 1)”




]




}





],
“metadata”: {



	“kernelspec”: {
	“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”





},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.5.1”




}




},
“nbformat”: 4,
“nbformat_minor”: 0





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The Markdown parser included in the Jupyter Notebook is MathJax-aware.  This means that you can freely mix in mathematical expressions using the [MathJax subset of Tex and LaTeX](https://docs.mathjax.org/en/latest/input/tex/).  [Some examples from the MathJax demos site](https://mathjax.github.io/MathJax-demos-web/) are reproduced below, as well as the Markdown+TeX source.”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Motivating Examplesn”,
“n”,
“## The Lorenz Equationsn”,
“### Sourcen”,
“`\n",
"\\begin{align}\n",
"\\dot{x} & = \\sigma(y-x) \\\\\n",
"\\dot{y} & = \\rho x - y - xz \\\\\n",
"\\dot{z} & = -\\beta z + xy\n",
"\\end{align}\n",
"`n”,
“### Displayn”,
“n”,
“$\begin{align}n”,
“\dot{x} & = \sigma(y-x) \\n”,
“\dot{y} & = \rho x - y - xz \\n”,
“\dot{z} & = -\beta z + xyn”,
“\end{align}$”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## The Cauchy-Schwarz Inequalityn”,
“### Sourcen”,
“`\n",
"\\begin{equation*}\n",
"\\left( \\sum_{k=1}^n a_k b_k \\right)^2 \\leq \\left( \\sum_{k=1}^n a_k^2 \\right) \\left( \\sum_{k=1}^n b_k^2 \\right)\n",
"\\end{equation*}\n",
"`n”,
“### Displayn”,
“n”,
“$\begin{equation*}n”,
“\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)n”,
“\end{equation*}$”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## A Cross Product Formulan”,
“### Sourcen”,
“`\n",
"\\begin{equation*}\n",
"\\mathbf{V}_1 \\times \\mathbf{V}_2 =  \\begin{vmatrix}\n",
"\\mathbf{i} & \\mathbf{j} & \\mathbf{k} \\\\\n",
"\\frac{\\partial X}{\\partial u} &  \\frac{\\partial Y}{\\partial u} & 0 \\\\\n",
"\\frac{\\partial X}{\\partial v} &  \\frac{\\partial Y}{\\partial v} & 0\n",
"\\end{vmatrix}  \n",
"\\end{equation*}\n",
"`n”,
“### Displayn”,
“n”,
“$\begin{equation*}n”,
“\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}n”,
“\mathbf{i} & \mathbf{j} & \mathbf{k} \\n”,
“\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\n”,
“\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0n”,
“\end{vmatrix}  n”,
“\end{equation*}$”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## The probability of getting \(k\) heads when flipping \(n\) coins isn”,
“### Sourcen”,
“`\n",
"\\begin{equation*}\n",
"P(E)   = {n \\choose k} p^k (1-p)^{ n-k} \n",
"\\end{equation*}\n",
"`n”,
“### Displayn”,
“n”,
“$\begin{equation*}n”,
“P(E)   = {n \choose k} p^k (1-p)^{ n-k} n”,
“\end{equation*}$”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## An Identity of Ramanujann”,
“### Sourcen”,
“`\n",
"\\begin{equation*}\n",
"\\frac{1}{\\Bigl(\\sqrt{\\phi \\sqrt{5}}-\\phi\\Bigr) e^{\\frac25 \\pi}} =\n",
"1+\\frac{e^{-2\\pi}} {1+\\frac{e^{-4\\pi}} {1+\\frac{e^{-6\\pi}}\n",
"{1+\\frac{e^{-8\\pi}} {1+\\ldots} } } } \n",
"\\end{equation*}\n",
"`n”,
“### Displayn”,
“$\begin{equation*}n”,
“\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =n”,
“1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}n”,
“{1+\frac{e^{-8\pi}} {1+\ldots} } } } n”,
“\end{equation*}$”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## A Rogers-Ramanujan Identityn”,
“### Sourcen”,
“`\n",
"\\begin{equation*}\n",
"1 +  \\frac{q^2}{(1-q)}+\\frac{q^6}{(1-q)(1-q^2)}+\\cdots =\n",
"\\prod_{j=0}^{\\infty}\\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},\n",
"\\quad\\quad \\text{for $|q|<1$}. \n",
"\\end{equation*}\n",
"`n”,
“### Displayn”,
“n”,
“$$\begin{equation*}n”,
“1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =n”,
“\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},n”,
“\quad\quad \text{for $|q|<1$}. n”,
“\end{equation*}$$”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Maxwell’s Equationsn”,
“### Sourcen”,
“`\n",
"\\begin{align}\n",
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\   \\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n",
"\\end{align}\n",
"`n”,
“### Displayn”,
“n”,
“$\begin{align}n”,
“\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\n”,
“\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\n”,
“\nabla \cdot \vec{\mathbf{B}} & = 0 n”,
“\end{align}$”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Equation Numbering and Referencesn”,
“n”,
“Equation numbering and referencing will be available in a future version of the Jupyter notebook.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Inline Typesetting (Mixing Markdown and TeX)n”,
“n”,
“While display equations look good for a page of samples, the ability to mix math and formatted text in a paragraph is also important.n”,
“n”,
“### Sourcen”,
“`\n",
"This expression $\\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a [Markdown-formatted](https://daringfireball.net/projects/markdown/) sentence.  \n",
"`n”,
“n”,
“### Displayn”,
“This expression $\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a [Markdown-formatted](https://daringfireball.net/projects/markdown/) sentence.  “




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Other Syntaxn”,
“n”,
“You will notice in other places on the web that $$ are needed explicitly to begin and end MathJax typesetting.  This is not required if you will be using TeX environments, but the Jupyter notebook will accept this syntax on legacy notebooks.  n”,
“n”,
“## Sourcen”,
“n”,
“`\n",
"$$\n",
"\\begin{array}{c}\n",
"y_1 \\\\\\\n",
"y_2 \\mathtt{t}_i \\\\\\\n",
"z_{3,4}\n",
"\\end{array}\n",
"$$\n",
"`n”,
“n”,
“`\n",
"$$\n",
"\\begin{array}{c}\n",
"y_1 \\cr\n",
"y_2 \\mathtt{t}_i \\cr\n",
"y_{3}\n",
"\\end{array}\n",
"$$\n",
"`n”,
“n”,
“`\n",
"$$\\begin{eqnarray} \n",
"x' &=& &x \\sin\\phi &+& z \\cos\\phi \\\\\n",
"z' &=& - &x \\cos\\phi &+& z \\sin\\phi \\\\\n",
"\\end{eqnarray}$$\n",
"`n”,
“n”,
“`\n",
"$$\n",
"x=4\n",
"$$\n",
"`n”,
“n”,
“## Displayn”,
“n”,
“$$n”,
“\begin{array}{c}n”,
“y_1 \\\n”,
“y_2 \mathtt{t}_i \\\n”,
“z_{3,4}n”,
“\end{array}n”,
“$$n”,
“n”,
“$$n”,
“\begin{array}{c}n”,
“y_1 \crn”,
“y_2 \mathtt{t}_i \crn”,
“y_{3}n”,
“\end{array}n”,
“$$n”,
“n”,
“$$\begin{eqnarray} n”,
“x’ &=& &x \sin\phi &+& z \cos\phi \\n”,
“z’ &=& - &x \cos\phi &+& z \sin\phi \\n”,
“\end{eqnarray}$$n”,
“n”,
“$$n”,
“x=4n”,
“$$”




]




}





],
“metadata”: {



	“kernelspec”: {
	“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”





},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.7.3”




}




},
“nbformat”: 4,
“nbformat_minor”: 1





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {



	“slideshow”: {
	“slide_type”: “slide”





}




},
“source”: [


“# What is the Jupyter Notebook?”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Introduction”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The Jupyter Notebook is an interactive computing environment that enables users to author notebook documents that include: n”,
“- Live coden”,
“- Interactive widgetsn”,
“- Plotsn”,
“- Narrative textn”,
“- Equationsn”,
“- Imagesn”,
“- Videon”,
“n”,
“These documents provide a complete and self-contained record of a computation that can be converted to various formats and shared with others using email, [Dropbox](https://www.dropbox.com/), version control systems (like git/[GitHub](https://github.com)) or [nbviewer.jupyter.org](https://nbviewer.jupyter.org).”




]




},
{


“cell_type”: “markdown”,
“metadata”: {



	“slideshow”: {
	“slide_type”: “slide”





}




},
“source”: [


“### Components”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The Jupyter Notebook combines three components:n”,
“n”,
“* The notebook web application: An interactive web application for writing and running code interactively and authoring notebook documents.n”,
“* Kernels: Separate processes started by the notebook web application that runs users’ code in a given language and returns output back to the notebook web application. The kernel also handles things like computations for interactive widgets, tab completion and introspection. n”,
“* Notebook documents: Self-contained documents that contain a representation of all content visible in the notebook web application, including inputs and outputs of the computations, narrativen”,
“text, equations, images, and rich media representations of objects. Each notebook document has its own kernel.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {



	“slideshow”: {
	“slide_type”: “slide”





}




},
“source”: [


“## Notebook web application”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The notebook web application enables users to:n”,
“n”,
“* Edit code in the browser, with automatic syntax highlighting, indentation, and tab completion/introspection.n”,
“* Run code from the browser, with the results of computations attached to the code which generated them.n”,
“* See the results of computations with rich media representations, such as HTML, LaTeX, PNG, SVG, PDF, etc.n”,
“* Create and use interactive JavaScript widgets, which bind interactive user interface controls and visualizations to reactive kernel side computations.n”,
“* Author narrative text using the [Markdown](https://daringfireball.net/projects/markdown/) markup language.n”,
“* Include mathematical equations using LaTeX syntax in Markdown, which are rendered in-browser by [MathJax](https://www.mathjax.org/).”




]




},
{


“cell_type”: “markdown”,
“metadata”: {



	“slideshow”: {
	“slide_type”: “slide”





}




},
“source”: [


“## Kernels”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Through Jupyter’s kernel and messaging architecture, the Notebook allows code to be run in a range of different programming languages.  For each notebook document that a user opens, the web application starts a kernel that runs the code for that notebook. Each kernel is capable of running code in a single programming language and there are kernels available in the following languages:n”,
“n”,
“* Python(https://github.com/ipython/ipython)n”,
“* Julia (https://github.com/JuliaLang/IJulia.jl)n”,
“* R (https://github.com/IRkernel/IRkernel)n”,
“* Ruby (https://github.com/minrk/iruby)n”,
“* Haskell (https://github.com/gibiansky/IHaskell)n”,
“* Scala (https://github.com/Bridgewater/scala-notebook)n”,
“* node.js (https://gist.github.com/Carreau/4279371)n”,
“* Go (https://github.com/takluyver/igo)n”,
“n”,
“The default kernel runs Python code. The notebook provides a simple way for users to pick which of these kernels is used for a given notebook. n”,
“n”,
“Each of these kernels communicate with the notebook web application and web browser using a JSON over ZeroMQ/WebSockets message protocol that is described [here](https://jupyter-client.readthedocs.io/en/latest/messaging.html#messaging). Most users don’t need to know about these details, but it helps to understand that "kernels run code."”




]




},
{


“cell_type”: “markdown”,
“metadata”: {



	“slideshow”: {
	“slide_type”: “slide”





}




},
“source”: [


“## Notebook documents”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Notebook documents contain the inputs and outputs of an interactive session as well as narrative text that accompanies the code but is not meant for execution. Rich output generated by running code, including HTML, images, video, and plots, is embeddeed in the notebook, which makes it a complete and self-contained record of a computation. “




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“When you run the notebook web application on your computer, notebook documents are just files on your local filesystem with a .ipynb extension. This allows you to use familiar workflows for organizing your notebooks into folders and sharing them with others.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Notebooks consist of a linear sequence of cells. There are three basic cell types:n”,
“n”,
“* Code cells: Input and output of live code that is run in the kerneln”,
“* Markdown cells: Narrative text with embedded LaTeX equationsn”,
“* Raw cells: Unformatted text that is included, without modification, when notebooks are converted to different formats using nbconvertn”,
“n”,
“Internally, notebook documents are [JSON](https://en.wikipedia.org/wiki/JSON) data with binary values [base64](https://en.wikipedia.org/wiki/Base64) encoded. This allows them to be read and manipulated programmatically by any programming language. Because JSON is a text format, notebook documents are version control friendly.n”,
“n”,
“Notebooks can be exported to different static formats including HTML, reStructeredText, LaTeX, PDF, and slide shows ([reveal.js](https://revealjs.com)) using Jupyter’s nbconvert utility.n”,
“n”,
“Furthermore, any notebook document available from a public URL or on GitHub can be shared via [nbviewer](https://nbviewer.jupyter.org). This service loads the notebook document from the URL and renders it as a static web page. The resulting web page may thus be shared with others without their needing to install the Jupyter Notebook.”




]




}





],
“metadata”: {



	“kernelspec”: {
	“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”





},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.7.2”




}




},
“nbformat”: 4,
“nbformat_minor”: 1





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# Markdown Cells”




]





},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Text can be added to Jupyter Notebooks using Markdown cells.  You can change the cell type to Markdown by using the Cell menu, the toolbar, or the key shortcut m.  Markdown is a popular markup language that is a superset of HTML. Its specification can be found here:n”,
“n”,
“<https://daringfireball.net/projects/markdown/>”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Markdown basics”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can make text italic or bold by surrounding a block of text with a single or double * respectively”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can build nested itemized or enumerated lists:n”,
“n”,
“* Onen”,
”    - Sublistn”,
”        - Thisn”,
”  - Sublistn”,
”        - Thatn”,
”        - The other thingn”,
“* Twon”,
”  - Sublistn”,
“* Threen”,
”  - Sublistn”,
“n”,
“Now another list:n”,
“n”,
“1. Here we gon”,
”    1. Sublistn”,
”    2. Sublistn”,
“2. There we gon”,
“3. Now this”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can add horizontal rules:n”,
“n”,
“—”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Here is a blockquote:n”,
“n”,
“> Beautiful is better than ugly.n”,
“> Explicit is better than implicit.n”,
“> Simple is better than complex.n”,
“> Complex is better than complicated.n”,
“> Flat is better than nested.n”,
“> Sparse is better than dense.n”,
“> Readability counts.n”,
“> Special cases aren’t special enough to break the rules.n”,
“> Although practicality beats purity.n”,
“> Errors should never pass silently.n”,
“> Unless explicitly silenced.n”,
“> In the face of ambiguity, refuse the temptation to guess.n”,
“> There should be one– and preferably only one –obvious way to do it.n”,
“> Although that way may not be obvious at first unless you’re Dutch.n”,
“> Now is better than never.n”,
“> Although never is often better than right now.n”,
“> If the implementation is hard to explain, it’s a bad idea.n”,
“> If the implementation is easy to explain, it may be a good idea.n”,
“> Namespaces are one honking great idea – let’s do more of those!”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“And shorthand for links:n”,
“n”,
“[Jupyter’s website](https://jupyter.org)”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can use backslash \ to generate literal characters which would otherwise have special meaning in the Markdown syntax.n”,
“n”,
“`\n",
"\\*literal asterisks\\*\n",
" *literal asterisks*\n",
"`n”,
“n”,
“Use double backslash \ \ to generate the literal $ symbol.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Headings”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can add headings by starting a line with one (or multiple) # followed by a space, as in the following example:n”,
“n”,
“`\n",
"# Heading 1\n",
"# Heading 2\n",
"## Heading 2.1\n",
"## Heading 2.2\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Embedded code”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“You can embed code meant for illustration instead of execution in Python:n”,
“n”,
”    def f(x):n”,
”        """a docstring"""n”,
”        return x**2n”,
“n”,
“or other languages:n”,
“n”,
”    for (i=0; i<n; i++) {n”,
”      printf("hello %d\n", i);n”,
”      x += 4;n”,
”    }”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## LaTeX equations”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Courtesy of MathJax, you can include mathematical expressions both inline: n”,
“$e^{i\pi} + 1 = 0$  and displayed:n”,
“n”,
“\begin{equation}n”,
“e^x=\sum_{i=0}^\infty \frac{1}{i!}x^in”,
“\end{equation}n”,
“n”,
“Inline expressions can be added by surrounding the latex code with $:n”,
“n”,
“`\n",
"$e^{i\\pi} + 1 = 0$\n",
"`n”,
“n”,
“Expressions on their own line are surrounded by \begin{equation} and \end{equation}:n”,
“n”,
“`latex\n",
"\\begin{equation}\n",
"e^x=\\sum_{i=0}^\\infty \\frac{1}{i!}x^i\n",
"\\end{equation}\n",
"`”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## GitHub flavored markdown”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“The Notebook webapp supports Github flavored markdown meaning that you can use triple backticks for code blocks:n”,
“n”,
”    `python\n",
"    print \"Hello World\"\n",
"    `n”,
“n”,
”    `javascript\n",
"    console.log(\"Hello World\")\n",
"    `n”,
“n”,
“Gives:n”,
“n”,
“`python\n",
"print \"Hello World\"\n",
"`n”,
“n”,
“`javascript\n",
"console.log(\"Hello World\")\n",
"`n”,
“n”,
“And a table like this: n”,
“n”,
”    | This | is   |\n",
"    |------|——|\n",
"    |   a  | table| n”,
“n”,
“A nice HTML Table:n”,
“n”,
“| This | is   |\n",
"|——|------|n”,
“|   a  | table| n”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## General HTML”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Because Markdown is a superset of HTML you can even add things like HTML tables:n”,
“n”,
“<table>n”,
“<tr>n”,
“<th>Header 1</th>n”,
“<th>Header 2</th>n”,
“</tr>n”,
“<tr>n”,
“<td>row 1, cell 1</td>n”,
“<td>row 1, cell 2</td>n”,
“</tr>n”,
“<tr>n”,
“<td>row 2, cell 1</td>n”,
“<td>row 2, cell 2</td>n”,
“</tr>n”,
“</table>”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“## Local files”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“If you have local files in your Notebook directory, you can refer to these files in Markdown cells directly:n”,
“n”,
”    [subdirectory/]<filename>n”,
“n”,
“For example, in the images folder, we have the Python logo:n”,
“n”,
”    <img src="../images/python_logo.svg" />n”,
“n”,
“<img src="../images/python_logo.svg" />n”,
“n”,
“and a video with the HTML5 video tag:n”,
“n”,
”    <video controls src="../images/animation.m4v">animation</video>n”,
“n”,
“<video controls src="../images/animation.m4v">animation</video>n”,
“n”,
“These do not embed the data into the notebook file, and require that the files exist when you are viewing the notebook.”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Security of local files”




]




},
{


“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“Note that this means that the Jupyter notebook server also acts as a generic file servern”,
“for files inside the same tree as your notebooks.  Access is not granted outside then”,
“notebook folder so you have strict control over what files are visible, but for thisn”,
“reason it is highly recommended that you do not run the notebook server with a notebookn”,
“directory at a high level in your filesystem (e.g. your home directory).n”,
“n”,
“When you run the notebook in a password-protected manner, local file access is restrictedn”,
“to authenticated users unless read-only views are active.”




]




},
{



	“attachments”: {
	
	“pycon-logo.jpg”: {
	“image/jpeg”: “/9j/4AAQSkZJRgABAQAAAQABAAD/4gKgSUNDX1BST0ZJTEUAAQEAAAKQbGNtcwQwAABtbnRyUkdCIFhZWiAH4AAJABUADgApADhhY3NwQVBQTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLWxjbXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtkZXNjAAABCAAAADhjcHJ0AAABQAAAAE53dHB0AAABkAAAABRjaGFkAAABpAAAACxyWFlaAAAB0AAAABRiWFlaAAAB5AAAABRnWFlaAAAB+AAAABRyVFJDAAACDAAAACBnVFJDAAACLAAAACBiVFJDAAACTAAAACBjaHJtAAACbAAAACRtbHVjAAAAAAAAAAEAAAAMZW5VUwAAABwAAAAcAHMAUgBHAEIAIABiAHUAaQBsAHQALQBpAG4AAG1sdWMAAAAAAAAAAQAAAAxlblVTAAAAMgAAABwATgBvACAAYwBvAHAAeQByAGkAZwBoAHQALAAgAHUAcwBlACAAZgByAGUAZQBsAHkAAAAAWFlaIAAAAAAAAPbWAAEAAAAA0y1zZjMyAAAAAAABDEoAAAXj///zKgAAB5sAAP2H///7ov///aMAAAPYAADAlFhZWiAAAAAAAABvlAAAOO4AAAOQWFlaIAAAAAAAACSdAAAPgwAAtr5YWVogAAAAAAAAYqUAALeQAAAY3nBhcmEAAAAAAAMAAAACZmYAAPKnAAANWQAAE9AAAApbcGFyYQAAAAAAAwAAAAJmZgAA8qcAAA1ZAAAT0AAACltwYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKW2Nocm0AAAAAAAMAAAAAo9cAAFR7AABMzQAAmZoAACZmAAAPXP/bAEMABQMEBAQDBQQEBAUFBQYHDAgHBwcHDwsLCQwRDxISEQ8RERMWHBcTFBoVEREYIRgaHR0fHx8TFyIkIh4kHB4fHv/bAEMBBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/CABEIAgACAAMBIgACEQEDEQH/xAAcAAEAAgIDAQAAAAAAAAAAAAAABgcFCAIDBAH/xAAaAQEAAwEBAQAAAAAAAAAAAAAAAwQFAgEG/9oADAMBAAIQAxAAAAG5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeWtfHNDK5ePyAAAAAAAAAAAAAAAAAAAAAAAAAYTNxUrv1WdGzB4yQ9RYnpo+8BW9kahG3tJ3JrKWDPaosApWy/RHi8wPF7aSJvNqHskl7WywC03m+HqAAAAAAAAAAAAAAAA+fKOLC8fHIEo76FuwjndTvrOXuk2IJJDMlizuumu5ASHWTZHWEu2A9OYK4u6vpmeiM5+Ol7gUXelFGSkMMyRn4RGbpIvH/AC7CmI+xmtjYpWM/Pe4cwAAAAAAAAAAAACEcXYTWtrJrAn1W2JWh5ZjlY4fa5zfccJFkvpzgloY8x3jsbJFRZOyhEeiajX+zZn8K1svhzOnXHZTGFM991Rgr20Kx9Zg7P8GdKntWFxAt2npDMSBXdVkHNlUXy5kQAAAAAAAAAAAcKOvQVJgbowp1x2NXqfdfNgxQFw54fPoAAD4fXj6/ecgx/Yex8++dAAVBm55XZ4srOfWa5TGxMMQPyYeWmTquTQYnd7QycgAAAAAAAAAAAADE5YU1ctX2efQDickVhk1W149UnVYpz/CRtNVyPg4/ZIvjv4+ddT29bno9+P8AnqSZuAI5bgkOv3bDa2CVFM69yVOPKG0BjYfYQrOAXT6zLgAAAAAAAAAAAAAAAdcarOenPIFjl3LPf6Y7GIzdnZ2GxV+Gtusc36Kc5/w5Kah4axs6saO5ZWSxuSu4vXU9uVXX0Pb8kUmt5dKYTYappq0RTDBXMvjPaxdR7B9lFWZS1JSILgAAAAAAAAAAAAAAAw3vORq/BY2/kHPK+uNiZrJ1NDH1nZ1Y5P1FlZLG5K7i+GsbOrGltWVksbkruL4axs6saW1ZWSxuSu4qq7Uqurpy6TRmTT0lV2pVcF2XSWNSaelEqvv2qpq0NS6L6eBKbQoDJcSXqw2Zoa4edAAAAAAAAAAAACLdcdlScOvSw2aylqRT4KC2dWOB9rZWSxuSu4/hrGzKxp7FmZLBe69ifaxnte09az8lGfddx/VWM4gNTWtDJRbI28jMVXPK8raU1k0Kkc1TJVXYtbV70yk0UlM1TlVdqVXXvy7JY2TWKNJYXYKq9T52MW3TvZLBsGi0pzdwOewAAAADz4/qPMIxj5IZurjwyQWqp3xdw3Z46VdxW/5KrdxWHXPNNV6e36khkfTgnEmUx3B7539fB1EHvgAAAAAAAAHP5xedev14lz1ne6OPO/nV3O4+FjV4jmtT11AhtXV7KJcS3ypD28S3Eqr3cTWOhGQjnk7D5COalvPmcNtfJB1wAAAOD3m9Of4li6Y+uOWBrF9HMlZLU7+e6kXD2ed00uvt56o9enZ51RPO9HnVG87vPaQ+3cKR+XeKQ4XkKL4XueUMvjr95oteHV7zSi5evrmnlt9HvFVrN8/XFdJ55Oo4clGAki8zhz7iB4AAA9HnzPPeQjl3duft034byjPXFTZ+Mei1RteEWrWWB9rKsr44NYoRnh8mur87MpAZX0A6vO+15/QHziczgczpO4A856AHX2Bw5gA6jtceQPIet8856TrOx1+MyDH+8+x+QPeNeecxhWr8/d+PhVg5f0FcziG2fV06swDz/QfEZX3T6TVb1GSO0OrnvtFPWApyN3PTGlhWDjozIsn6jOVvk8Zo4XdesAsvjoKug1N2y1eMDeEso8tmI25rWWr5YTc5gaEsKxCldntf70KRr3JbOlS2Xr5fxQWxWpeypV+w2uuxQBgdZdi8AVDtNrXfpCqUmtulA3hSGzRQvZmcES2r7y9prLtbrjtKAeKi9ga0tZ8DtGrsv3HlMjjI7m/Q9EljVz6/ysgGbugAAKUuuEz06uzGH+2qT7xkstW0ciZX0IedNX9oNRTZqjY/eJYOtGy9QFYbXUHfhQdk1tZJMwaqbP6wbPmtN/UDfxqvbESwxMNitddigBw51+UjtVQt/GvNn1hkyrtuNZtmTF0zc1Mmw0bklWkL2Gqq1QBjsi9816+SSNavzuYw/wB+RWs5dcJm1W6EFwAAB5PWea9cc/gNf5xalWXzXue0UNgBqxtPq+bM94K4seuTCXDT9wFB2TXeZLAzuq2zBrNs/q9dZT9/UJfZTuEzckIvsVrrsUANYr/1sNjpHF5Oa9TaDzErTZbVnasw1M3NTJsNr5sHq2X7J+PIAAhlV31Q1/H+cuOfsU7d9ZkfRg9AAAAriv70j13LgN5RqSw2QgtgKWukAIjLhX9gBgKS2MFPXCFb1psmINJsmKonWdFSW2AGBoXZga0bA5YU3FtjRU9sBja1twddLXaAAAFG3lGp6lO2Bk5DNWyYpagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH//EADIQAAEEAgAEBAUDBAMBAAAAAAQBAgMFAAYHEBQ0EhMgNhEVMDVAFiFQIiMkJSczoDH/2gAIAQEAAQUC/wDA8WRCKPJuwSS1ViLZjfzvEqd6RV9HWx1lNUCVKfyVxZi1Y0m6GPfBu/wx+7heEG+vLazSeBZ+VXs3V3uLfGj7dxMb/blndFrQEV1YO0e5KKm5mlDhwD7TTzTfxl1RCW075AKsV13rxkuz0ADqrh1M19RKqhcQuUBD4ThpmED7a3w7FsZXX6pK7xaPw3T/AFWrIn6058RJnyn7Vr4VXVavM5NaZa35hOo7HMeSTPCNCMRATH/Ar+yG7LUCug22nlcPNERFlxsdfWS0l+Dau4hRSJd3eqwCVGkmddR6YqgbLxBY4e1he2WIl3hHqxeopdBM6ilvBGFbtNLPAMjvjw/4cfZ9PT47dzO/zeIHEqf+i7d8t03QB/Jo9aRDN04ilr4W6tditokObWLb1iTfnOcjW2J5+yWNdqdWMwnWqeZhEFhqZwBURolKHEbtV4Mmu7FvcDDKIXZAm6xw0YqQ7D/rN04hweZS6nP5+v2rvDWVZJ8bNFKcHe3n9G/b6F01zA//AI74fEwMptDXzdi56f8A5u17R/m7lxIJVcnmuqtuo03yoOc4cndIpY5mb1YqHVfpmT9PcPCppq0kwQZY3skZ+XuxLh6DSQ2DUeJtKRXViJEeDoJEg5m5QyVmwbZAy11vUJmWmt63VQHWmslSUV5xHF8YEi/M9I1PYx6wFmwQ3AXDeHwhbNTHvvrylMK2Xaqp1tXi00jdX/Rdp8ddp46QPRSbMyPJ2LJBSWU2uH6v59ttJP8As9+3L3bsZnQ02tay2zA1ilWmZZf77cXkVNpCkYeuUtTTm7FJpM5Id8SQOM38reYHT6/pZbSaHOIsMC1WuPfJRUv9zftuC66k4fmtIrKf40e43X+o3XdKb5gIEMZa6lrNdNX1EWp0zHhABhetURUY1rGcjK8IxR4IR46uhgAtN6/o2TiQWqZqdrWuq9kO+X0/DsDwDUgsJm372bIWea9muaxw+rvhHttmtpanHQ0dPWlsOB/IkY2SMsGz1o9u7j+UyKz2s/YLKGlqtArnRDZZDWOvXVGDZXF7bVIVnifsn4PEcV6xvs6CzrP0lWGJvocxNNBs00NDrEbaTXdGCkNsdmlku9j246Kpp9aGWa/Oe/Z9lhjZDF+UoAKybNaLUV2u102wGNRGt+mqomOKGbinBJiHBLjShnYiovqJgiJgXS6zzhB4hBs+V13nbgHMbR1eyFVtXpYjQQahjru7Q6ZCNNqvl1b+ZcBMsa7RTHiF+uaWKFs96BFk+ySLkt3YPyQ4yTFVV9KKqZGcZHkV3YMyDZJEyC9AlyGWKZvqkABlm3YWxMEtR2Umm6TVddYfnbNSGS2qf/ObnNa0y9Chwq9NmySR8jvT5Mvw8t+NEKcjoJ2+qOR8bhb02HA70KbGua5vp2Crbbg1AEVaD/AyPZGyx2CKPDDSS15J+6j1J82Lr8kcCDRJlWCH0bGMZlh2WVfYY9jH4TDF59ZUClwka29MIqT4fQGaSItdsEUmRvZIz+Fs7ocXDjSTH8oBCJ2RiJlMNBGHlh2WVfYZYdllX2HIjuNe7fkXGx5A1N1cBgBQnME0kN9ZdDlfwZE8Q8VrdzE8wK8k1QKIWDDkRAMq+wyw7LKvsMsOyyr7DkR3GvdvyI7jXu3VEVD6IWfCIHwv5VV3MNg88REX59nYQgxnmzmy4xrnrCL8Mqv2r8sOyyr7DLDssq+wyw7LKvsORHca92/IjuNe7fkT+88dQpQ80ckMmAGzhS1lhCdH+bdWrAmTyyTy5WV05z+hHCrsq+wyw7LKvsMsOyyr7DLDssq+w5Edxr3b8iO417t+RHca929gCObHZ104L8glkglpbVhrPy720aHHI90j8pad5SxRsijsOyyr7DLFU6P4plcSO0HrRMONEcL5jMAsA4wvmgGG2ITxfNZlfZBME+aAZ80AyaaN01IYNFD14WdaJk72LPQSRpAjkXkR3GvdvksbJY7qneKuRvdG+itGmR/iuexuONEbjrUBuOuwUwm/i8qXxyyeDI0Rj/nR3wW3PXJLA2RvjdnnTfBXvX8VHvTPE7IiSIsSyOTEtz0z50d8JER7/BkXjikGv4vKbdgrjbUB2NNEdjXsd9GSeGPH2YLMfeAtyTYY8fsBC4+7Pdj7M52PIIf/ACLCCGYyzObjLs9uM2AhMj2GPGXgLsZZgvyOeGTCWeWR+SjXLnlyYkMy505GdORiDErijEpnTkZ05GLDMmeXJitcn5QzPMIumeCz+iv7Z4kwOCQuVtEauN18nG67jdegxKEPEpAUxKgBMSrATErwkxAxExB4ExI40xERPqqiLixxrijwLihiLi14S4tWAuLUALi0gK4tCHjtegx2u47XycdRGphkEgkviTE/f6VKzx2ezN8NkyKSTGVxz8LhkFl8eUgw50zKIJMfDG2ShHgcPZERgBSPdI9P3WiB6IT+GvQetEX9lje6N9aRGeFdjDtD8pmLRhObdjDgzePBIZCpH1xzMfFJHmst8Vk6ONzuWwg9WHg8r4JxJ2Ejy/8Abr/abKZ1JuasF5xHOSWOPI5oZFxVREY5r2r+yMc17cklijxP35pPCr+THsfya9jvTJJHHjVRycpCRonIqKkJEEz8Y9j0keyNvXBZ1wWIqKnLaQvJIzWjOmNvOwyedg4ZEr55814HpA+TY42u9Gwh9KfmpGfB0v8A2xFdJSZDG6WUIdgo3O8nlItnwlDZo1zKazemSO17hwavi4hF+RVcN45Urt0uZK0VsZhslDdFVRMbmvZul4RMaopTYNHuyHlbG98dHqpzgrq6e6Oo4fPel9zvz/ltXLIbZlU1mXUmRPbLFvNzME2EQwpKe6OqnaaGo9XtewTmkcPHvS64lKvRVtLY2MJEMg89NCo1TyOHaULNG6KXOq6vX82cz4szXg+qP+hfi9VX4LM4cjxI9Tpldy1MTxS+gVEXa9mhZNRaM/wbEcO0oPW5nV+xb6V595rIvSUfEj7vo7Gt17b6kxb2tjdDXWCI/YT42LXal7j2j2/ji+t07QPcHPbQZj6bQ6wkGHdfD+o6FFSk4hfftTY2PXtpRrdgB7KfVBwajh79+2+omthNar3VNSInzXZPRtgnhlyvIdGjl8KESummygF6Wv8Ao3g3S2OCy/CBV+KoiqtaP0oXoE92bHI2Oi0WNX7Dm5jdLsFRA+xus4kfeNK9ucjfcZvZal7j2j2/mrl+PWNA9weh7msZMr7a8jYkcfEL79WGMA08mSSacLstk+w8Pfv2bOR01Fw+H8279FkP1QSoqKi/BSpfjBlGN1Vj9LbRvGLnx5a2P59n6bFVSzlMsrHNNpHVkGcSRvjDw5H8y0ziR940r25yN9xm9lqXuPaPb+sgssCwypg3aB7g9G9WHSVPD4Dz7HOIX36GT5rDtTUbsAXZbJ9h4e/fs4jEeCs4cD+Cv9OyD+RZ58eWpDeAX6RkKECuRWu5anB4AvSyJk+zQwwwpy4h/Y+Gaf2s4kfeNK9uHXFcEQioqG+4zey1L3HtHt/h79+2wXpL7QPcHo2w5bG61sD5dUZxC+/cPq9Ia/bfcYXZbJ9h4e/fs4hEebc6qP01B6dsg8YXJqK5wcKDi/T2CHybXkBD04fpD928+IX2Lhp/05xJY5LPUr+uGqNiNZYW9Wx0dZb/ABg2A3aKp1Xp7Vdse0e3+Hv37iQH8WaB7g57AUodNRyjwWzdhpnKioqcQFRb7WtirR6a4JQ+2GarB9k+w8Pfv2WKrZ7IxqMZ6T4eoD5a/D51r9TcYv68qIvOsvVBrR7Nl57ZXzWVRpVUTWC5e1UFsGRqNvHJr+ovhIzaNaSykTVLlZNY1+OpbajKZXafQGVx98D8xqtQ186vsed+E6wqV1e6RW6vdK6sgcFVB0L7uGbUbhkmt6oohGWg6l12nUJwFjKjnR61rZ4tz67eLybLNOi/r+pYhRHQfpwPAKYYMj+OPphjCP04HlcFEDB/4Bv/xAA0EQABAwIDBAgEBwEAAAAAAAACAAEDBAUREjETFUFRICEiMjNAUnFCYZGhBhQwNGKAgRD/2gAIAQMBAT8B/sfnHms48/NyVcYI7gT91kVTKXFO7vqhjMtGTiTasmd20Q1Mo8UFwJu8yjq4z8rNWBH1N1upag5NXVJbair8MepbtyE7G6tNupnB3IMVKAjIWVuKtHhkp/FL3VriCRyztiq+jh25Mw4KGyfmcdmWGHNVNHLTE4m2iiqDj0dQ1gSdT9T+RImFsXVRWOfUOiorfNWFhG3+oaEISdn63ZWjwyU/il7q0eGSn8UvdWjwyU/il7q0d4lXfuCVo7xKv/cEoLRHWZuDqrpJKWRwNU9Y4dRaISYmxb9YzYGzOp6gpn+SpqNz7RaKzCwxOzKfxS91ajEYyxdTyBtS6+KtVTCIPmNvqp6iLaF2m1VrrKcI3zG31U1RE8hOxNrzVqqoBIsTb6qtniKcnYmVomjYi7SrSZ6gsFaO8SuAsU5M6qaNw7Q6KCoKJ/kgNjbFumUoDq6KtgH4k9zgZPdg4Cnu5cBT3Wbkylq5Ze862hL8zN6nX5iX1P8AVOTvr+mxkOjrbSep01TM3xOtoSiq5Yu66a6zcmTXcuIprsHEU1zgdDWwF8SGUC0dSjlN26ODoKeU+6KagqH+FNbJ+Sa1TfJbpk5st0F6luj+f2W6G9X2W6G9S3QPqW6B9S3Q3qW6G9X2W6P5/ZboL1LdMnNk9qm+Se2z8k9BUN8KOnlDvCsH6MQ5jZlJbNpI5ZtVJaxEMRfrUYAJYuys9FTE5PkZ/wDFdCGnMsrYKMHkLKgBgbK3kzBjHK6kB4yyq2kM5hmbirxRUwsL5GbXgpAAixZlHaxIMSfrUds2cjFm0/7VxbOT3X4ZlzMYvwV4m2tWeGjKhiyjnfj5WuixHO3BWmXZ1QY8XX4mmygANq6pItpJ7dGtjzx48lQVpUcu0HkhF5Dw5pmytg3lXbM2DoheM8OSr60qyXaFyVFHkjx59F2xbBGOUnZUAYnm5eXrwwPNzQDmJmTNg2HSqKQzkchVJC8Q9ry9XC8o9lU9IYSMRf0E/8QAKhEAAgICAAUDBAMBAQAAAAAAAQIAAwQREhQhMVEyQEEFEyBhMDOAECL/2gAIAQIBAT8B/wBH8JnCfdrQ7RcUfMFKD4mgIWUdzNiaBhpQ/EbFHxGodfa147N3iVKnaXZVVPqM5zY2omZlW76GKxKjczPUJX6RMp2XWjMfIs4B1j/UPt64hKr0tG1j1K/eWY7L29iASdCVY4XqZfk10DbRslrB0mZ6hK/SJmeoSv0iZnqEr9ImZ2Eo/rEzOwlH9Yj5r0a+RKb1uXiWW44bqIQQdH+ZVLHQlVQQS6/h6CZpJYblfpEywSwlatwjpMupyw0JXW/COkyqLCw0piVPwjpMumwgaWU1uKx0mYjaHSUAisTM7CYxIQalV/F0MtqDiMpU6P5hGPYQY9h+IMSyDCb5MGEPMGGkSlE7TQn2k8T7SeJofxlQZ9tfE+0niaEelH7w4aQ4Q8w4TfBhxLIcewfEKMO4iHag/k1iL3MOTX5nN1znEnOr4nOjxOd/U539TnT4nOnxOdPic6fE539Tnf1OdHic6vic4k5uuczX5i2I3Y/k50pMXL4VA1EzCW6xixHSZt9o1/6mGDaBuOwRdxmLHZ9mrFTsRGDruZQNYOphX2nY4opYDrHzCG6R8viUjX/aH4ln1ZNENMGvgpEyX2eH2uM+jwzNTipM+k17YtL34V/HHfheZFAvThMY8K7hO+vtQddYp4l3MegUJwiZD8T/AI9op2NzKbS69vittdRjobnf8qr1VdGX2Bz09vRYEPWW3qy6H+BP/8QASBAAAgECAgUFCwoEBQUBAAAAAQIDABEEEhAhIjFBEzJRYXEFFCAjUnJzgZGhsTAzNEBCUGKCksF0orLRJFPC4fAVY2SToPH/2gAIAQEABj8C/wDgeaedwka7yayphZ3TytQrl8K9xuIO8ff2Dw45jFmbrtb+9JA2FikzIM7FdZPbUowufxpu2Y3+8+WxLb+ao3tV8P3PjydZJq2I7n28yT9q2MHiC3WQKj7zgVIAwzi1wB1mjAJozKBcpm16WwDQqkdysbX1m2h4Z5z3ty3JlOAFYFuguPhRxEZswwmZT+WpJsK+JlKa2YSGpMBjGMjKuZGbf2HwDPiZBHGOJrkuXZL7i62H3bDLiGkHJarKd4pVZocNENw3UIZXhkvq8ZHq99TT4bDJFNEucZBa9SwjnRy6/XQOu0rj+YaVxcfOSTPUc8fMkUMKxnn/ALV3NxJN3V8j9tv9qv8A+GPhWIb/AL37CsZl3Zpbfq8DCYBDwzW6ybVFPC78rmCtc86sPNiG1LGdf4RU2JwkmJYA3KoLhRXeONA5S10car9RozTyLHGN7Gs+HmSVelTf7iuaKnE8ow/yxerGSSPzkoSwSLIh3FTfRyMheWUb1ThRjhzJKBfI9Ru7Hk3jGXq6aOLwuIklaMZmvuYVyMpzNF4s36OFYrucx1Ndf0nVWCxyb7e9T/vSSrzXUMKkboQmu6bga4eTf41yBO3h2y+rhRwshsspAuPNqXuZKNSzZj1MLir/APjVN6c/AVjD0cp/V4EabxHIv8uusHhh0s5+A/euR3NySxes765U75nLftU2IiHiwzvq6Kw3c6PWzHOw9wpcRhpUEttySWYVEO6JviPtVyJx0Gfoz/XyzGwGsmj3P7nEphRvPSOk0OXQ4mTiW3eysvegj60NqE0LtNgnbX0HqPXUeJgN0cXqXD907k5nuL72rD4nDKRAdpR8RUeMi2uTIcH8J/4K73nJfECIxZLb+ArGyfZLIPZf+9QYzcjlXPwNLLxilB9tYRuKpk9lYpuiFz7qxGGwSs/fCZZFVM2qu9pLqJhkIPTWGbpaOuXA2MQub18aY9ERH81Tq8qKUkLNc7hbfWKlGsGNjf8AMPAxOM4DO/tNYbC7wMiH23NYTAprJ8YR7h+9f9NeWWEOvzd+mi830mbn/hHRQxOJf/DpNYHs3UHikV1PFTcVyMb5ZcQcot0caPdN8RlfJynJ5fs1NDISywuAhPR0UBiMTDETwZ7UHjZXU7iDf65Ll3yEJUcgG3PtsfhokwOOwvIIHyrJf3mpMLLzZBv6OusX3Im3qSw7RqNQd1IBqc5vzDfQxcOvIOWTs41N3OlO1GDGew7qnwGNLo6ocuXygal7mYzVHI1r9fA1BiwNcb5T2Gi29+9/ev8A+U+FxUchGbMhT4V3QwuHw8qOMO5W/GsTOUsWkC3twFQ4/udFmJsSehhWEx8OTkUKZ7ndY0I4iomRsyE0e5Mkq8oynaG4a7189hv1H+1SsziSZhd27OFYifGyO8VxyZbp130OgNiykX6KxEc+Fzk7LLexFqbum8dkUlj0DoFKm9IXH8tYLsj/AKqxE4Nny5V7TRxU87xAm0YUe+p1OJ5blSPs2talwwN4Yzk/KN9S9zVxMb3GUorWPqqVo75E2tZ1s1T42XECPa5zC9z0U/cxnvHtBlvqDDiKDYiaOIE2BdrfW5Cu+Ng9QqDtQ7DDRHMwHKrJZT+1YNpOdyQrFPHzQXv8KmUC7x+MX1VJgJNbQ8DxU02DJ8VI2T1Hm1Hi90chDnsOo0MVh0viYuj7a0cJjVaKe2VTIOjcTXemKZXNzqG6xosYnfqZ6PeuGjivvyjw7HWKCIoVRuAGm+JwsUpHFl11ycESRoOCi1YjHiZ5HlvYEc25rASfgX+s1hsCNx8Y3wH71hsIs6RzKuUo2q5qacGz2yp2mpe6Mg2pNlOzjX+DBXDRSGQdgqHuPhtqxGYDix3CgkZHKBcqnpc8ak7qTc59mO/RxNZITmhj2I+vrqE4i7lFWMAb2NqixcasqyC9j9ZaNwGVhYg8afF9zwZcI28b9XQf71dsDLynQGFvbSSzoYcEh9QHV0mssdhJlyQpUndGcHlZ+bfydEmKwMbci18pC3Wx4Go+6WLRwiuHLkWvbcBUffcZbk91jarD6lhcam5Lo3V0VHL3QaAsF1q3OU9VR4rA4uRIW1+VcUphBbkXzMOq1f8ATEgAbLkEobh2ViO6mIS0kguoPRwFTd2MVrsTlPSxqPuZh22Izk9f2jUfcvCHK7plHUlYaKRbZHzMDwtrpcPEx71i4/h4mliiUKiCwH1vlDg8OX8rkxehNHFnZmyJ0Cm7p905M8StbL5R6OygqiwG4fKXJtW1iIR2uK+lQ/rFfSof1itnEQnscVcG/hNBOgeNhYg1m5bEBPIuKTDwLljQWA0ct3jh8+++QVJHAMzqQ2UcbU+ASBc2vK99a+qp+7eNuLjZv5PT66n7rY0f4bD7Z9W5axM68/EBgx6L765SRbYibabqHAfXZcI/2xqPQeFT9xsUMr5iV7eI+QzSyKg6zWp2kP4RXicMo62N6+dyeaK28TKfzVcm/g3BtWxiZR+avnc/nCvHYZT1qbVrdoz+IVmikVx1Hw+WkwkDyeUUF6gw2AjzxlvGge6pMMh22GVj0sd9d8Sr/h4NZ624D6/B3S7lgctfb1219Na/AzMQAOJq0ZMzfh3VsEQr+Gs0js7dJPhX5J7ebXMb2VdcNMR1Ia2oZB2r4WaN2RukGtsiZfxVaQmFvxbqzKQQeI8LvZpjFZswYC9JhYdYXe3lH7iLuwVRxNFMIvKN5R3V4+UsOjhpsK1QMo6W1U8s067IvZRXE1G5w0ZYjeVvWwir2CpfN0RdmjbRW7RUmwvONOXzqQfsmvEYhT1MLVrgZh0rr8DxEpUdHCgmLXk28obqDowZTxH3MUj8bL0DcKvNJccF4DSXjiYoN7cK2z7KjdIlDEa2tr0S+boi7NEvm6IuzTJ5xqTztMmZRzjTPDLlZTuavHREDyuGm8MlhxXgaCSeKl6DuP3GZZnCqKMeHvFF7zp8Smz5R3UGm8c/XuqUAWGXRF2aJfN0RdmiXzdEXZpk841J52mTzjUnnVYi4otD4l+rdRVxuNr6RHiLyxe8UJYXDKfuC77Tnmp01nmbsXgNFlBJq8nsqG3Rol83RF2aJfN0RdmiXzdEXZpk841J52mTzjUnnaZL+UaeXDmzqeaeNGOVCrDgdGeFu1eBq6bLjnJ0fXsiWac7h0UZJWLMeOjYGWPi5qZYl15NbHedEXZol83RF2aJfN0RdmiXzdEXZpk841J52mTzjUnnaZPONSedWWVdfBhvFbYzR8HGgSRMVYcayPZZxvHT9c5KIgzn+Wi7sWY7ydAmnusHvahHGoVRuAqXzdEXZol1jm1vFRK2IiBtuLivpMP66lUYiMnL01zhUSviFBAr6StSKuIUkrXOqNHnAYCvpK19JWnIcWLGnEkyqS3GvpMXtr6TD+unsy848aku6ja6a1EHRJ5xqTztBjkUMp3g0ZoLtB710B0Yqw3EVyUpAnH831baZV7TWvExfqr6QD2VqZz+WmGHjflOBbdRkkfMzbzW+g1g1uBqwZFHUtfP+6ir4hyDXONW5V7dGatbE+v6rqYj11zjXi5nXsNfSXr5/wB1WLIw61otYLfgK30JI3ysu40oxEb8pxK7q1s4/LX0gDtrViYv1Vssrdh+R25o17WrXiFPZWrO3YteLwzHta1bEMY7ddc9V7FrXiX9Vbc8jdrfeOxPIvY1asS/rrnq3atbcMZ7NVeMwzDsa9a869q1qxCjtrYmjbsapI/JYj61qBr5tvZWqJ/018xL+k18xL+k1qw8v6DWvDy/oNfMS/pNfMS/pNa4n/TXzbeytYP1qOPymAqYdd/kteqt9clAuZt9a+TH5q2poh7a2sV7ErankPqrnyn11zXP5q+Z99fRlr6NH7K+jQ/oFaoYx+WtSKPVWofK6xWtFPqrXDGfy19Gh/QK+jR+yvoy18z765rj81c+UeutmeQeqtnFe1K2Zoj7a1cmfzVyU65WrfWrX8lCOu9X8pAa2I3bsFasM/r1Vycy5WtfQ0UsjI29bca18o3a1MAvGnZoY2OfeVppQqg7lFuNF3N2Y3JqwraHjX1v/b7n2R41Naf2qxoOhsym4NLKVUncwtxrMsMYa+8LXNoW5RexqWKKRnbe1+Gjk4EzNa9a8M/q11txuvaKv5KE1mZFJ6SNOdB42PWOvQk0fOU3pJk3MKbtp/P/AGrklPi4tXr0d9ONiPm9Z8Dxkip2m1Wjljc/ha+i5NgKzIwZTxFXNZkYMOkHR4yRE7TatWnIJo83Rm0nIytbfY6DlYG2+x3eDeR1TtNqupBHSNOWTERIehnAq4NxUiRSo7RmzgHm6Lo6sOo1mkdUXpY2r6Zh/wD2CvpmH/8AYKuNY099INiTndR0ckx8XLq9dHtGgzvzVW9PNJzmN9Gdx42TWerq05lRQekDwSVHi5NpdDYNzv2kpu2p3Bs5fKvbbQsSC7MbCkgTco9vgYl5WLHlGA6helkeKaG/NYqVp8HinLzRjMrH7QqXkyRlYFusViMA7arcon7/ALUmHVrNO/8AKP8AgrESMx5NpLKPjSQ4Y2nm4+SKeRY58Q29iAWpdtmgvtxGldTdWFxUmAgkKQR7LZftGhiDh5RF5eU2odzsVIZFYeLZt4PRWMdGysIzrqBs9o5GyP66xboSrCFrH1VlzGzRm/X4EuK3sNSDrou3K4mY9AvQZGcJm8ZEeNLIhuri4pMFhWKSyDMzjgKaWLDzTAc5lUmjyD3T/LfdXfMuufFHlXJ91SYTDOUwqnLq+3ToGOVojcVhFvqMh+FGbCw5kBtctangmXK6GzCsLC3OWIX0vA/2h7KaJxZlNjoDk3cEK3bohwaHcoZ9ALDxce03yL2G2m0uhJk3qb1nHHXQi+yuv16GxbjUupe3wUBFx35/qrFq4vaMsO0VD+JWHuqbDNukQrUPKbNpOTf4UYgdmBQvrrDREWbJmbtNQD/sf6jUJVQCxJPXUj4fByOk1iCi3F6w0MnPSJVbttWIVtYOKYH9VTxlBk5Ii3qrB+f+1Y30eiTEk3ZsKc3bbXQ9G3gPDhxmkBDAdNYiXFw8m8hAUHfYViMvVf2Vggf8lfhQ9EKwmUWulzWMCWtylQejX4VjMRPMZpVQlLagKPojUS4dlEkbXs3GhDM6lrl3I3CkJ3T4jMey/gri0GptTduh4PsyW9tEmmkbedCAjbfab5KRALKdpdDX+zV6AGsmo4eIGvt8FP4z/VWMLmw5Iioj5KsTomI1CTxgqCKUl+Uku5PEcdEH8OP6jWH9fx0z/wAW39dT+jb4Vg/P/asb6PR3UwTHXHGzr2EUPRt4JdjZVFyaYpvxM2rqBNLGvNUWFD0QqDFP9iHUOk080vPc5jUHo1+FY30Ro+iOjFyX15Mo9eqjLbVFGT+3gyQ8SNXbVjqIq9Lb7WiNCLqNpvk0xIG1GbHs8BSRsx7XhYkg2Imb40mHeafE+Sm+mxGIH+JlG7yR0aMLiwNasYz8amxBGqKP3n/h0Qfw4/qNYf1/HTP/ABbf11P6NvhWD8/9qxvo6nw7KCxgbJ1NwqbJbxkZicHoND0beDyCnxuI2fVxpsa42IBq846B6IV3J7iQteJU5TE2+FYtVFgGsB6qg9GvwrG+iNH0R0Q4a+uWS/qH/BWIxJ3yPl9Q/wD3wnI5sm0PAfEHnSGw7Pk5IT9tbUVOojfpacjXI3uHhcjILo+Ls36qtDEkY/CttK+mH71jj1p++iD+HH9RrD+v40sGJxKpIeFXBuDU/wDFt/XU/o2+FYPz/wBqxvo6PojWIQCyuc6+uh6NvBkKHMieLjqGAi0nOk7ToHohTY5h4yc2HUtYzz/2qD0a/Csb6I0fRHQsN9UMdvWawqcSmc+vX4Szga429x0hRrJ3VHCPsLb5SUcG2tMUPkrr8JP4z/V4A9KKx3nJ++jDSfZMNh6j/vS4bFS8k8d9431NiYr5DqW9YWN9TLCgPsrFMw1riWa35r1I8cpaR0IEVtd6wluDX91Y30dH0RrDY5Ru8W/7fvQ9G3gYmdTZgmz21hpsV80j3NAd/wAWvtq4Nwa1HdEtRYfEy8lJELWtvqfExqbSvsio0O9VArG+iNH0R0SBTflp8i9l7UFXUALDwpYfKXVpiHBdr5WCfpBU6IE/HfwxiTk73E/K578L38Aw4e3KBgwHTU/fQCvKw2egDRyEpysNaP5JoqiRyr5QalxPdJkOQ3WJdft0d94VxHiPtA7mrLyCjrzi1GWVhJiWFiRuUdAqfChspkSwNSYrF5F2cqgG96mwoIDMLqT00cVi8iAKVABvfwJsLG2V2Gzerd63/MKt3rbtYVDA5ztFHY241iu6GP5SDETP4q45o7KyqkUg8oPS4vHsrOmtI13A9OjEYZTZpEKg0+JxaqihCoF73plU5WI1HopJ8WirHFrvmvc/ITp+O+iefoAUfKiKUsADfZr56f2j+1CdHkZh5Vvu8zu8isfJtXz0/tH9qMURYgm+1/8AAP8A/8QAKxABAAECBAUEAgMBAQAAAAAAAREAITFBUWEQcYGh8CCRscEw0UDh8VCg/9oACAEBAAE/If8AwPCvWaTcJc6PSrYE4Muif95O03SQHyq1vwzGu5ijssEyUwd3/pyqZL9tikkBc79yKlT0Yv2D7oE4VgF7y0URLN6Xl2qN8YCJrHGX2mXJq5xwZqvCJVhqS/8Alj9aOqcDJwNYiWyB5zjWWXgWGH0GK5nU0KLBihVeuVCJJc/5jH/IBNMNBjeGQdDOk4jg/OFMqQloLonKgoBjvBZ7J0pCo9og+eMu0ATrMw0zU8gUmoBETLsq7NLbX83VjabXsSo5WMY5furKw2GEegvJC1zjPjvSl8qmJjLGWFNwlFbkdip6dpLTBFSQ2w8DENaxRamArb0r/wCEQiAF1cqzakPm4VjDONrtWTB9HBgQrMepbFJ1bihTaMauJCHCDH7daN8SGbkjDvWJquuj9LdKt6i9m3HtPvU6YrXnD4UpM8gEmsb8o2KWYYJ0uXtNBeUgbr/b2plGZgTY+9DVIs4kWOc9qsl094oI6YxV8xD0NCo9n2qNLEPlHyUi5z9IH7UMVDR2LPhoIQbyXQPWadIQW9n3n2q/5BdtJwajK4yzibTGdRZ5RYx54UIgjI/zi6HkYBWc7Pg+L0K1DE4lsKTSyWcirF4jD4TdVvqycTZ3oBFtZROFKXUm5Fp/MaV4BnmN/GlHL6p5GR0iKa7ZPMN+FPMeO1cDmINgj9VciZDsrE/LOegT9whE5HN96QCrPhDck1xOtWFyvtWEOAdtvo9az80IMbVDZeyzSSmU2/EbVOHkgegdmhnjJt+xVwSUWNJGOiCVtH9VbEgPYfvR1ATcAtXKSawq3FTqUHVdBcOL4OtABLQ7Oqcc6y04gI+Ed6w86CT70AE5hj1/mTPScmjj2o3vOTo9uDLHHYCYA0cZqIRimKWQ5Vgco6ND1s9KiGi+CeZHeg5mKZ2We3xUiOSMiZ/PtRyXZMIDzi9RYlPKZfZoLkZtn9h70sxNJ1zqBGzKHHFS1ZYdRjEOGd6FZGHiDLq0b5E0AzF2iKkUIKFv8M5Kyyih0Sh9hkJRowFmcaEKRnIIyNqU2hJjkNsOEQ+HUTGmJjHTisjDa9CbNMxYiTWtLweRl714TXTYv16RT75kLxippTE0YIllLdnsU1in0NsV9WaAfWNEd0RlR8ubNKwfBQjBV7sxkFS7pMl+hKhKuAF0vQiSXP5Qir0QY/NFhd7EYduALpM8iM/akjVSLnFjtUdGK8Z1ZXe7OLtNIqIt4K8+5UrBCznc+laj+5f6LVqKYG+hzMqbGJIFlYY0KZXboyKlQzIiCihFoV15uPrQAIQjnR49iGA2OIS2IJ3UTwyHFMWFjZhvnSYkgW+1B0sk3/DsoUw05ZsazV+9+HfugvQTORxdX4pzaGHB7dFj3qR1K/yYPmu/WbT5PSmLrMngS26NS4rhGzz6mmacmsofVRYisU/kpDJhgcSk6xgINDtS3tHOr3dqtSkROsJYmtFHfF5QRPIrAaF4sy9X44CVLqyul9VECc3/AECl2g1cqHEdrUAAgLH8IkmVJqhXzXvdwaEL1ZZmIQ2Gyd6gv+W6zE9KgJ6gEPHBjvNZJYoUfMtZlHHPPQ+az7HZH0Y7VZYNDfCV3f3TkDDsbr2qW4kBgB99/VH8SfIP5d5OTLvooGIgYPDd2tTnIqsi/IJoYAoAsH5D4Q1Wlo5KPukL1yFq5aOaj7o+ENR9WtJU1IhlJwXvE8ebSXnud21ph4DiHEFQFploVxnM1c9WePM8y8vTDSY24F3QCX+6XAM4Icw+KjLMyl/5sQyGLdd71E8pPTbsSfg3TvFU0aS+9qUCfGCKXsRslEQNpMKZlLVfSzKWo0RA2k0pe5Gy1CBPjDNRRpL7yt07zevPDEt7qSynIDCPbj2oKEMvOvMqe/VJC3kP88xkGCIDD6tShZOcehldspAVKgWVnup5MuAv703YMZT6QVgJaFRUYsq/1lBWLBUPau4ilIjCQ+kuQYQmngz4C/vUKhZXe6iV2wkj6jiMcciS5acaf5uGIcx/4WIDxICvZAo/upbLJMI6cQgCrgFRK48c0NHmpPVrHDmNXmMIs29CQBpBXd+Hj78BIA0kpARGURnVioo7G9Sz5rSVMpjxxSIwkJxlsslxrpXugU/1WADxJH/jWXlaS5u1KsGBbocTuDKEDrQLz7U1P/Avrw7vw8ffh3fh4+/HyWteHtxmEZ3WlDoGKzbXKmuXV/dxlWTEv0Ksva0lzZ/4ecgZpjLGfOOOpVe2etG9Dren7okwMALHDx9+Hd+Hj78O78PH34+S1rw9uPkta8PamZksiWaN6HX9P1WJ8oMOLGWM+c1nIGP+BPyFYb/oVchDC7PDZPQUWaaEEAP34d34ePvw7vw8ffh3fh4+/HyWteHtx8lrXh7cSBAj81HRgcqzJrFAcHCxCON3an5CuN/2P5yZxtne0o17rhH4BtrH7axs64Y8ffh3fh4+/Du/Dx9+Hd+Hj78fJa14e3HyWteHtx8lrXh7VgpysR+Qbaz+ngo17CgzjbO8/mKgPY0atJKGUXeBJYoMOTtRa3gFiu78PH34DNBnaa/3qPF7wEvSLD7SlrlAGPgl7Nwva9f47S36AQ3rZVeaaEda/wAdr/Haa8QHrU0/ALahmKorB7SmFQwRuo236dK7Gjw8lrXh7cC1vALNElikx5u3BLwyi5QoD3NGp/G+JwrC70tfFItdvGl7CLQh3qQhUpnUdVXqxOKNMIYIAbVnQ5GgAlCa1/q0ATD1IrvPfxXaep/oUIg6yi1hfXZrOjzNEpYIQb1erE4IVHVUhCpDKrWEWhLvXfxp8UiVjd6SvmcPw9mmK++ZWOfMzoU9Dv2r5Z1MA5IrAx7K76S03Zf+eWZK76SViY91YhyRXyzqKjod+lY58zKvrmV2aZqw0dkf5QEqNihyReukIS7LjFEpCeVCkB58SKJCAu6pMlHroCRG5/KsNPdGtJnvfhBWAlq/F7RrZVg0EsgK+SNHdkl9U31/20DsgKNjzR/VY9zCrXvN19wzWDVsGqOxMaAjkxoCADb8oEAm9ARzY13JjWLVGLVvqGa07ydYdyCp2HJH9Ujugab6/wC2jd0h9V8EaYFBJmJWyq/F7QpEYSH8Okx2qwz/AIH1Xep2sMvJ9qk3wDak6NAWxBG3PGvDp0qxAEFBSMAClisPeVCclIdmBm0EAVbAUJgYxpp0f8cVzNNdeqgoCJZGkOxAyax95UoGNIIq2A0rRUkJ4TSFsQRtywoOjU3gSG1Y5eT6V3qcrDP+B90AD7AFKLEHCYk4biMzg6EQlZh+jTau9/Nd7+FSkuU75nhKX3i8beiDuWEcq28QHA7MCVWAobhIWRpCIAYrQ5NwlHBUFHCOVIAoRzOMkCcRE+3HECIuIeDJfcXEtH0gAZwToPa8EkeO+NQd6JmS4jI1cKm8rRptToSYWan5hiQe7Xif3Xif3QBBCRM+MJd+DxvwhYcL2yNCU04Wm8WuhToTKcIiDDLiMuBuQ0gT7IBfTasl0BzOCWM9xmV3v5q6MXNCm9R+iCtdkOrN9Fx6acBAFPt900cmp34Gvgo7lvekwQOav+VNgwCuGXz7qVehEHG492kCglthC7rJ7VeW6NLi8/7rFBNr1aiqy2WjODJqFsDajSGluoc6XTKKUpcH3tOW/MkWrMilbQIYlTcEDNksvyaa+aGIypQLH5yX9AngORguxWNZMMw2DAoXAuiBzE1qOYr6iSVnuxphgbt/am9ZNwd2gqXEZGesZNX+5myP9p604lSwscVdNqNKYnswkUMCGUmzH9qMjbYu600B1mTU8ULPWL8cHSw6smp/RBRau0YieCWU5gixwvSckXI/DCpu3Yntww/vzbUtYDhSZt9huifg4fPZ+Z819IMkvGoexOMgkacA2RpaZlGkmNZ4wblN3er2AU3Xfmr1AC6n3Sb60aV8Cpmmpm1EpC8xhehggc2EaMiDGpOkqcC2inc/lXcaFGSzWJgHtR3em3K+qJwpXOvRH29qwWbWsKxsfrV4PehkuqlWhsF62sE96s8CynROJtflrwe1J93MgCQ3rV7GA/opBMwDrJ7en4/PyPmnCQ2m0DZocFBNInd9uFnLn18D2/EMpPoPAMwqyLFZaJtRAGdHb8nzWPpYTsVllYc5qQFA4k2lb++DkbGPfHuNMhwVlxJPKi3Aj5e7j5rVXkNVdz+Vdx4YJHG4nud/VY1TCMgqcggz2D2KK2BlsEV4PeoA4n9gPelNV6ua3ryGjgPwe3CBIJ8z+ypEl1S2fL6Tt+b5DCmZqIRypgGIyUGYcI9kmH4w75Af3wECDjjwuMDPph39TJkImJfSa9OIzeWdEaIT4069OBXYB2SHw+9XUIY6LbscRHy93HzWqvIaq7n8q7jSBE57EqFCEo8zr6rC8eUhln/XWlw5z1/UT24eD3qxxSLIfHUoPh4MAjXkNHAfg9uEdYkNn9tI1WYdn9r1QIgfex78FIC4YcAN9gP7/HnHA2cqNGVA0eJ5cZ8N/VfUAtRvKFlhEB8OIFtPhoFndPtxkfL3USZRkLA66UTMCRMGvNaq8hqrufyruNeD2rtkDX/M+qynFwGYOXNmr8wfNe2HTh4Pesb0HQ/b8Fdj+FeQ0cB+D24RvZYdR+qkIjxFz9R58Z8NuJoyoGrWWsLdz/JARCx68AVAJWtRjObPv+I/l9GvMacKhMVbqvwqZ78QhWbRR/BzMIETRGQb0QzXvggFipKJSExg5VDmZnylXca8HtWMInlY+GvptNOYWisfNGyxLcxGD7xQQm1Q+qJmBIjZKjIKB2xp7CblccyRRu0lMYwKxXy9DgPwe3BXwlOgfagmhg0D1ajOc2XekRRIThIRKz6flhMYi5XPl4SMSQXIv6+flRcBGvonGPZizLvT0xgGYDj78JBmwiX7DasiFBk9GojAIQXVfXC01I8eNTSbXUiSuLwGdG6SZgOVR0g5+k48rVpyEQNyrowzTc+XoPYErBIzDTGGGZF80ainnCKXcWt8gypXFaUtYSsdOlIsmRA+9ID7ENQc+B92wwFLUXxDFNS9srVKbE1EY0t20AWVo/BAxBIcm/CVxiLnd+D8sSVNhM9eEg2cIChfkf8APNnAIoW5nCRMlTYTPT/wD//aAAwDAQACAAMAAAAQ8888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888YU88888888888888888888888888s8skcw84Mw488888888888888888cYMIcc8g4c8ss44IU088888888888888oQYYQocMMc8MAoYQ4Qc888888888888M8I88888462088E88csU8888888888888s088zGfI4zEvKz88s088888888888888883/y2EWUV6np2/788888888888888888E4E0VUVUVpVpGI5I888888888888888E+XVcQeSZbiYjVpU+J8888888xw05KAxASQTCCCCCCCCCCwjiAxAG14wxDCCCGEMLJDEHP+sMMc+PLIDFHMIKCCCDL7eVPd/48004088808888w8w0vlbJu3H88/Q8N84s08wI4Ak08gkEMYM08t6sv8APPPK7LnfLGKPKPPAOFPOHAPAPPPLHnF/PPPPvovPLHKHJNOCEFPKGGEAONPPEvvvPPPPMPPPPPPHDHPHDPPPPHPHDPPPPMPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP/EACkRAQABAgMHBQEBAQAAAAAAAAEAETEhQaFRYXGBkcHRIECx4fAwgBD/2gAIAQMBAT8Q/wBHoXHWCWHX3Vpg9au79SWIOOMuD5YfEuqsEq7wGXQOUuqksD54/MsQ8MJg9aO/9SX9p9QHWJ5WwtGuscA5+KwNR0aYbt74g7EOeOW/CGwAKxTOajtNa+WBYihcHbtlGQVywy3RqNRRhY8y3RnFrDEieVsbT6gOvsXz0CVPD1MsbF1Y4vYxmOiErlhsJrO01r5ZqO01r5ZqO01r5ZpTvNb2JpTvNT2IEBphRLczxSCFbMsyh4+oh56j/Z+uBKxcBY/Zyg4Op+oAtAe01r5ZSCMc3dLY3Zm2D4McwZcYhi8zNvGEI8cwZcY9EKybeMppKhcG3fFJCuSbCVAFjM3xsQ49iaU7whai9iVHF1H1KzMVc/Zw++D67FnFJdjyx+JbKvLzSHvPGh5jLJxa9iMsHJ8x0yJiVrFr9ZgZQ6zzMSS/zvEcGY9dRlk6zMStY65kJdOT5hLLwadmPvHCj4l8qcvFZZjzw+ZYt4JNxamvprZQCqJwlo1B3ibg5kRdHN8QzdbxDNHSDz/HOGd+ucM19Pubz0+5vPT7jkvp9xyv1zi8vxzjkjpHJ1vEBZ6nxB2DzJeNQ94BVA4RLL07y0NYadAq0p9xYhHCFKoziIwxSodu2UrlWhQDLtD4uwDZPZoLLH6uRsJaBqD+rBzniA2bI0ojKDEC4Qw6hVpT7/7VKWxErqxo6Y/HiHUcSnMvrK5cs4fftadcu4fUMSwA1whqrnTD58ymVtifTVRfF5iTEqjqYdGjCFWKhhYPamlhjCrFQJgUB0MerVlFV8Xj0gisxGcmkrayav59vSxk+PxEJzaQAFj1FAUY9Ll9udLhhQFD/An/xAApEQEAAQMBBwQDAQEAAAAAAAABABExQSFAUWGBkaGxIOHw8RAw0YBx/9oACAECAQE/EP8AR4mIhja9cpQ4wd9Za4LAlkDnBrMbgl7hd9JrlKnDZdR0EszXfDc241Y0VxvgyKFMaRuVdCdhOyPEJbF7NIBmr/usyWO6HWvvvLM13zUdRsNNFWZFZWDrgywA6BnYTsjxOwnZHidhOyPE838TzfxdUFTryYUyYzMCspoo/uNXJoK++DnviMyq0nZHiUQK6S6ljxKuLpuYLW2MMrYNNzCkuxhlYB5MIFnJiqCziVAJ5sV1Rh475mor746ueu4jLE4q9DnMAmV2wd1ltzhQPHpFNaehArH67gVmGjpF8ek4UtuLsswu2YBBWo85cnLiHKcSA9NSKUAgfvEcvSJ2H5zjhUcbifv7Sv7+0+Vnys+VnysH9/aB+/tDO4ZVDdvznBcvSC/eKUBlT08CCU9qpxgYADGIqMDFRfKSrdTMULEQXHYwFwggZlfaFKkXqG1NVhEVWJgCEq7RXj+bvc0lGrNeukarulf5NNWPOy66s+ZXpcGI0aFOst9306Q2Zx4D/e1YDYERKzsqIGIBYM48F/nak0gsekVVJRxmUHe2eo7kq6xFVV9RG6Qm2Gzs2xjG6/4E/8QAKxABAAEDAwMEAgMBAQEBAAAAAREAITFBUWEQcYGRobHwIMEwQFDR4fGg/9oACAEBAAE/EP8A8D0mu+WNg3XAGaixhshqjfSU8VJDDJq+y4cOn+8bXeMAD4ljkp1MhdQRRkWISKzBrEC1WIDvXu/6cEZTFBZGTFpWxJOaG3gxE7xMIcOHzmkl9RfCmJSgmcdCCRzFXsplCLIXugIdihiAWH6pyHjqL+Pw0xFtYmDFs9JBFAyoHaRJFe9fAILn1/7q9XoohodmEqCVYEyUBBbGxem8nmrEs3ciLchmbR1ib4LysBlXYqU02Ccq3lFAEEJEbJ/mEBJhlpJhS+pDHiJQrGKM6i3iWru5rJtjEO9qgyhMBhFkguKCnsBcNagJeIq5CDks6klMlZEacwnrT22U5hCeb3qLwDIO6UyBLvLAK8geTWJsmfQtS4M9rEufrSmMhKM0geIfwkchJa+JuFnfvRILNJKCFxcRp61I6Jcosj29ApJD1DCciYExLDS7DoA5wNkokYiNaixTk0wHddKGa/BB2YbPD/hHhdQgBlWsIaKmdo/tRV+wHHesooPsSOvEmvHQrBFcmWGCcTN8UgPCGJlaQHDPFZUB4zwB3hUuAaiyJMTAZzZ60zxjKleUuJNFrTGUTj5HUVMPPANp0Y9Cp3QHcw9kpD7rkhutvSk8FGJs90+mrgIsbk7dsfKklYsp7ABaNiObh50QBPZFNe7KcbSfFR2By3I/1TiIBbmSfv8AC6ISxwAr2VcFvJiCI+sVA1g8QoFtXIUkL2wna55aa6HDIra1xfNMqjvKg2HKccKirYunMoHIClXXIBG4irGES1n5+oDYyg+aJsCRGRN/7yS6owIlV0Ap5XpMMYULye7tOCIKC83IQHCrzVrznKMXT1KLzoVgbNwyYJeO5T9ibKXUtAyPakre5Shkl4iUjYqQdDCSAlmyZxGrxZRQYhw3Uj35iF8LYyHNqs2G9vYD0KJ4QNsLfgF9KCabIXCLtKvFSLfDOFpPQKB5Ag5We3Nqmt7XHkgKRFNGkwMbspcCQO6hOIlaG8VTHuhBZHvUkgWWWNn7olszkkaHyOKcxAZEYLyz1QFUAurpUjbIwtvqelE6y6YH8BUKi5bpxQZlbeCj60TlPZkpLIizNOEjGuBcHcVVq9irothL2Oy8qIo09uBEpEwUgKkoxmgW6ZKK5N4YwtFw5pO1DLJqOFKl0gZWbgpjmo3oFD3BZO39wi51p2+Qnmi0p4tiUk2BY5d+jQqgSEgEYoGAdc0fiEhLJzFCdqW1FliLHAg7t6IRIZYWBWy907KSdDZluvJk340ITMIrB7ICpjfQBMknQlGsUm7hLEsh02HubVMqGRvCe0LupV3X5Rz5KvWpXEiUBACGSRwyzEXHhdTZ4QmLFrzOaiZEOvMJySzGvajly+1fO5CSThrVdWxru0Ea5ih+TZRWlpMCPqFMLA9HgJhQQHGtdrTHjfVS1BrDJSW4LquW8WCht+TCRWwkSdtDD0SeeeoB4LNT2CmCMCKlpcRm1O6AcrmdF4fC2oYA1RJYXpR80BFuUECIQmEuRyTPilPEDOBORMgEYWahzzhDAPcFnQ0oZzUtEReBPakQBIAfuBqLVOL3iYlCASpgsFDvIZjkwkhITNrAN4Wfe2sdiVC6mcUKojBehRLQBBCRGyf2lcow3oXgTQfKZhIlaaCiOz0gKv8AB8m1LWaJRrDUSgSPgVmTfa1gWKvbLMJRKDlY80rRLfEu0ahA8blJAVNWWI7oonl3pxynKRcenHoUqPb5mQ88nka0st8FaWCExCxOtK5Wx3JQnVba0QLkLPYCJO80vEIIGYFuOF/Nn4hpA5E1KHZQwdgCwcHU7eSgDbXHE0t1plDqwZeaMokIb7S5sNrTmZoAiIcFYz4SozRdFoKPhElAkaJnGTbTKkM3rMF7riR2v4VdT/XXPohP708OxsgFj2LiFCgjBeyThJ78KiCiQwlg4fAKVQuUkpddYJbblSMnlyUD3QAdgoch34MoXhK1CgF4X0Rizcbn9kkJzSEiGyKVKvZeFmFcyD3EpT2CZN3AAedXzthCG4wBFsHGKnxUQmAI7cM7wa0kmk25cnW/Ow3pBIblPoOdkJEWJFhjBKbGq9TELEkgtYBpX1TrBKMqFqGAIAwBp/ScD3OnhrhndKGeDUsImFTSzaps8AEhhpNkls2oA1I0BW9ul4mn7y2yLLgqckxa7kzA4NF65OeybVJlaruj4aO4jDUu54F5spvCHlvUQBLGxLGrJOsrSgEAmATUHEImaclQ+zIOWAaHdIWA0B/bQMMiyd5SmlfsUkGIdBYETi1S+fBEQhC0ZIZmN2gA7JAiAAwB/JxN9B70WWOnylDBLSbJ8NOCWE3D5abLDT4SnE30nt+SOJASD9Oo6UzYLCJfE7XvzRUrolQzKt1VWek2DfB4IieYoTN2ShINWJQMxShQLSrgWmYuQ5msc+8pFlN2AG8UDqVnoRTZ9AXo+nTS3mbQpPYtBH/sbM4YGU3b4P7qgykaYL+GE8TQlSTYh3Wog7DufwbKIOXgnNEBrCEfQKc0bKTzBD1aaOnCE9RpEhZkngQpai5Uvv8AiNBcKH2oEBYgnhUoo68JT0CnNWykcwS9SiE1lAHqFbqIOThjH5kZtJVJhUSvLT1VU0helM1vJRlmwvMAtyBDgUD76VbkjLiN/wC/EiJgaZsiSGwZlrjCbE6x+ALchIN1bFAzlBlOXaOw03xasTl3ntFZuwA3l/EkpLAErR8wkVA3WK+7fqib3PZISDX3OLcpkoLIkJ+ObsAF5KL4tGZwbz3mgYyhynBtHcKBbkJBuJZ/ITgoCFBLBC1LxQVEQCOUMTtoAf4Rojk8HK0APhv8kM+w71gkgsrg289VgtAJV2Cuzmy9LvamTqS8xowR6NZw/pilLIqBZXyri8SPtX2u3T375dOLxI+9R1gAMBLEUj9t9gg4CUkK6ORxcH0K7ObL0u9qZuRCJCPXJJBZXLt5oAfDf5KZ9x2o0RyeDhP8bNJ/QNbbF+1SjRPoVhPLfqs80ERm6y8FEDX2j1pkF0A3Blfp9rt09++XT7Xbp798uv0++vYfj1mgdFfPWoJnLE4OF14fFI7jgGfwt4eso0T6lYTyXrFJ/UNb7N+/+Hms4+XQDV4KVhkoMHupg7Hl6x1YwnM+TwS1aC7tptjX6uxQ6/nARgDHT375dPtdunv3y6fa7dPfvl1+n317D8ev0++vYfjR6/hyGyOavBdy82zp9HZoNDIXWjFnxr1VgkBMnuLgbPhrFZx8Oomjw/4D86jfrd+T0mpxlNyE6D956WaQt0wZe1BCmkcHd1oYqYAQF3T7Xbp798un2u3T375dPtdunv3y6/T769h+PX6ffXsPx6jcRRJG+pM8toYPA8NnilOLEcn/AJz0nGUXKRoP3mj5xG/W58nrH97c+CAfuGvapo5Gy9jY46ClRTPOHwHmKvRGQG3q6HBbp798un2u3T375dPtdunv3y6fa7dPfvl1+n317D8ev0++vYfj1+n317D8atpOIB23U4bUqVFM8Y/A+J6TRyNh7O5xWx8EAfdNO39zcZiBPe2PNL0ZNE3XoTsPsBs5em9WSECBX2u3T375dEbiFAWk8h3FNoVkAZFmn0kbL+6Ml45VGCKS/wC1PEqPJUswV91/VD8ccidMUnqeGm/5LWZcc191/Vfdf1VyIgLikaLpGESQvRwTO5KPSTuP7pf6SBElcpNKhAi27tNQ5EwLbp9Pvr2H49LpCBApnYfYDdy9d+h4GRRDUa2OYoD3tz+sfJmZL5U+jhkFHgWnEXH1IrPHz/uKlJQSzurCWMxFS/RMlTRr+hTKt4Mrk1OKjEgFgMBtSS+Cf1V8opgDaxS+fW0JVgELxMVIXbMjP9WAs2JCKvLdWVnmou1Ahd0mjAtSLHyKSHyT+qnEglgcjvRKv4Mrg0OKdP0Kh+iZCioSUFs5qSEnMRWePn/U04A5+pFPg44FT4Uo+TMyXw/hm5gyJ+i1LSxpP4lSAscHyKi2yPtgUmAPkx7nxQCFP1LNLMDsj4lSl40C9FpKIqsq6/56QREZE0qEtGgXoNLEDsj5lAAUfUkVEAfJn3fiotuj7YlIAWeT5NQ0s6T+ZUXMOBP0GtOCzhD9f2uRHKlRpW4h8Vwm5L8V9K/VfSv1TpaEwr9UaWpMC/VfSv1X0r9Vwm4L8VGlboHxXIjlD+1rwWcAfuouIh/Aflf4QSEwBK1c2nNhPFIZokyJyMBqrYyVBwn5o9BoEeLm/CkAibyPd/WkLNP/ANuaF9PPxTPfbC+IpYZR3/7qDh01S/dQWEzefzU5l7t8lRNuIIMHpToQsoD9VxIIQfy8SCElGhAyCP1UzfiGTJ6VGYexfBUllM2j8VJya6ofulllPb/up6fvlfM0L6+fmiFmn/5cUAUXaB7n60CvFzflU3CPin1CpaGN6S1EslCYosbzi4vikSAyJCfwzcTL+C/IVGWjvELQ0Drg+BKdIZ1/5lFF8BQisIlnD6Vo271gAVIGEiyWcXJ2qL9kfAowsMKsA07UAJJ4FLZagVeLByyDQiXgprBFLoytLhcAlVwFDLQ6zkbS9V/xz00NU5G0PUKXC6BCJkaKwRS4MjUCrxYGsh0Zk4agm7s8u4Vpw7KUkRlbl04NYAFSJhIut3FiN61ZdqWo4CABqrYyU6wxr/3KaR0yfIlTl47RKUG+OEhMwKSUAAACANOhRnGN+zyEnJz0jY/ssZHhLPenatymV6rkZK+v3dAKSggjb/vEeOeiyXAAtlnsL90/AhnWvxCUmlJxdTHgXo2/g4BlVwUatJNNwlmhgMqIANWscbAbyW6FLmQ4OJSaGokiSJ1lsVw57XTPXZ6dcZjDx0gKZwXAYeH8XYlAQvEtHeWSAbiWev8A8inCho9fwYG4maA8sCiMCYbPo7UgKoBdXSoOgAkdpHNQ9eATO6B1kSCfiWkDhHU6rD0CC268C/ceiSAgrb/rKeeKYKLp9Y6PBIoGFxY5WDzU7H9knAcBY7dAjHLH6NAy8vHQCAIkI60b44SEzChL+KYBqIkW+yzGydLBiXXA+chOzvX1+6mmU0MJcTkJfFJSqq3V1rkwKyselAdIiGHVO7L+AlnMCBGcABamfIMbULBPcofwpVNkNUbspwpcx4pBBHiVeKVgpGMYDvJHCq3V0pDd4geaRdbZI4TSzrEF7hlthnUoHZaUWH2fZ1IU80CuAjb8Jse5EpDQsizwIR8iUlf8yHiV4PBZmmr+Rp7JGPM0tABETMldJROENGpWVViSBR0YWryeGj0HRcGXF6fKJ8CiR0TegX7vosBd0f3+AGe5k7u4N3goI517XgmDYIKAJIEIwjYjMMSPpQnid0ZPIlK/Y5E9R0Qu0OVk1CGgrsAy67001Iw2RGVh2iYvNT83sGIfC7nUvAoSFAWWzGEZoa34U8gmJJYeXehcxO4CFNYl6tMuEiSQUJXiSncmEKWS1OPBbIjR4VPHUKgcRzDcOzFcGBWRj0pKEUS4mlKm08sqC7ykPnpcARjlD0yV7m3TEXZiZF/ukxsP8JmpGEvIsd5e3RirIJgBlcJJ5pgZd2FmsAVzCAT4D136cvDmQ9gg/wDH4x9AAkb8lRQ9dKwTZkpKgIbin5CkIFfcQPBh8Vdc0RF9J7Q9KRNkUsXPvYeClt6QXLseSB4pSlBwmwsj7HpRdk8hlkrqwB4qQNiwQTCFBWY3ovBKMgITrcamFbDkJPSoMl8cS4AwBBG0U0pP6vcoAiDIjcaaGG7nqQF8193sfhcdD4OcFtMLFC8SgiSVhsIW/wCKIgNrKJvp5pQVnXIsseyV9DvUxpZiJQrzUxtYGCSeUmeaIMAAgNKGfZYPcKSqaywe9fQ71GGMVDxAYSB9aMO1lkBYXIBL3pKMyzDfpKfiu1P6J7hb/wBdHEmcrEl6Cnk2pqocqScz84YDwAdIUSXSAi52h7/xWErYQF+DgZPHQucgobjj3pP5cnLRtSGXSwBQ7IReF0/VfT8UIBbK86a/MKJYHKpS111sGHuDohqfLL5j7GmMftMZkuqEnmgAAALAadEPuPyUiQT+r3OgzgonJwO0z2193sfih8DIDSrwA0DizKYCXhntXFgCgA9Cvod6zZjsYvJ50FBz6yFMmNr24jpI+g2r6HfpR2f4w7LmFSX2f0HPJc8fiuyUXhdP1D1p1IBIUMI0n8GTkoucAKbBn36TJ3Gkjfh4WDz/AB5YDwzv9oer0bQBgbkz0vWBbtMD3j0/JSETwggiYaISM/bkMo1Zi9DyIdGNkluYewadIOwK1uns1tDxponUkPuPyUiQT+r3KZMHaU9xbstIPDhgiwSAgk6mK+72Pxm/1JcQ8EJRNYmosCAPKe+7p9DvWOiQ3hUNMITPO1RY6VgQgGgB0kfQbV9Dv0hHTZmZjakBSPo1GPoj8rUoWrTI9p9ejaEMDYmemSq9MbfdPofxw4wkdQu8MNLfTZkGE9esPCIhfEHqr0/IoqTWJw8hJR1CAwBFrDY9OrmJUnFqgguo7gp8vVD7ilsddMIsEDzQiILyDcRMn4SJBP6vcr6HeuClYIMmPIV93sfjcKHlEhRyrm1AK2M4kPZHQ+h3qEdY4uuIOyr+jqTkfQbV9Dv0pOUCNhFu8J8VYN8Ii6/QflLwiAXxJ6i9eq3wyZRgPWoK0SGgXeWX+SxyPLGX3nozZEAZWjjQibjPuP5fR5/n9gIZHxbJJ4PXpL9lqECg3vEcU1c5EBgjSYmKbCoGRI9RpOFlJiReoJ60ykKELBIgC3ZeJqXe1ugnfevq9yvod65AlAyr/hB4V93sfhvPve5jkZeKeobS5uQ1CTxRAyABAXdYHmj3cPKCREyNNSCI5XQ+EpjVjjJBQzI43qDJ5r4E4aoFt2oUmHdxH4r6Davod+mLkEux2EJow4QYBAeh+RxozNxn2CmbIhHI9LnI8MZPeP5fcnCR9XToUi4uisp9PzlqJENxGvkG3P4FsKGF4ZNhhR2omuZ2AFFpV24N+jNAS8JExaTWRPFqBili0cwo8VYigsbJhwOiZ1dGnCeRUEIGS5lphG0xmo5Mw2xvIz7VOM4QZCyXZi6hdgoXldqkuY0kJ4qHB2DQmZYBquzpFOVcyg3dhSJ0miPLPRkwsAO7a34Z8OATDYGInmr+giXXaiqEoiuRvRLSAVIIW7exvaghfMY4iIbaGJGamgqAw3iKeSjvpdimReQ3AIm8uOnNAzUjiYmrWuRQA0AydyuYyXqDwb1dH34ARF4lmWIj+AIFxdJYRxfp7k4Sfq6/ymC+8CBNCRC9KSHttjCFss+f88D22ThA3WfPSk4L7yaA0BEB/wDgH//ZICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA=”





}





},
“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Markdown attachmentsn”,
“n”,
“Since Jupyter notebook version 5.0, in addition to referencing external file you can attach a file to a markdown cell. n”,
“To do so drag the file from in a markdown cell while editing it:n”,
“n”,
“![pycon-logo.jpg](attachment:pycon-logo.jpg)n”,
“n”,
“Files are stored in cell metadata and will be automatically scrubbed at save-time if not referenced. You can recognized attached images from other files by their url that starts with attachment:. For the image above:n”,
“n”,
”    ![pycon-logo.jpg](attachment:pycon-logo.jpg)n”,
”    n”,
“Keep in mind that attached files will increase the size of your notebook. n”,
“n”,
“You can manually edit the attachment by using the View > Cell Toolbar > Attachment menu, but you should not need to. “




]




}





],
“metadata”: {


“anaconda-cloud”: {},
“kernelspec”: {


“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”




},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.7.2”




}




},
“nbformat”: 4,
“nbformat_minor”: 1





}



            

          

      

      

    

  

    
      
          
            
  


Notebook Examples

The pages in this section are all converted notebook files. You can also
view these notebooks on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/tree/master/]




            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“# My Notebook”




]





},
{


“cell_type”: “code”,
“execution_count”: 1,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“def foo():n”,
”    return "foo"”




]




},
{


“cell_type”: “code”,
“execution_count”: 2,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“def has_ip_syntax():n”,
”    listing = !lsn”,
”    return listing”




]




},
{


“cell_type”: “code”,
“execution_count”: 4,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“def whatsmyname():n”,
”    return __name__”




]




}





],
“metadata”: {



	“kernelspec”: {
	“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”





},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.5.1+”




}




},
“nbformat”: 4,
“nbformat_minor”: 0





}



            

          

      

      

    

  

    
      
          
            
  


	{
	
	“cells”: [
	
	{
	“cell_type”: “markdown”,
“metadata”: {},
“source”: [


“### Other notebookn”,
“n”,
“This notebook just defines bar”




]





},
{


“cell_type”: “code”,
“execution_count”: 2,
“metadata”: {


“collapsed”: false




},
“outputs”: [],
“source”: [


“def bar(x):n”,
”    return "bar" * x”




]




}





],
“metadata”: {



	“kernelspec”: {
	“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”





},
“language_info”: {



	“codemirror_mode”: {
	“name”: “ipython”,
“version”: 3





},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.5.1”




}




},
“nbformat”: 4,
“nbformat_minor”: 0





}



            

          

      

      

    

  _static/images/table-style-after.png
Acceleration Cylinders Displacement Horsepower Miles_per_Gallon Name Origin  Weight_in_lbs Year

12.0 8 307.0 130.0 18.0 chevjolot USA 3504 1970-01-01
chevelle malibu

1.5 8 350.0 165.0 150  Duick Sky';‘zrg USA 3693 1970-01-01

1.0 8 318.0 150.0 18.0 plymout USA 3436 1970-01-01
satellite

12.0 8 304.0 150.0 16.0  amc rebel sst USA 3433 1970-01-01

105 8 302.0 140.0 17.0 ford torino USA 3449 1970-01-01

10.0 8 429.0 198.0 15.0 ford galaxie 500 USA 4341 1970-01-01

9.0 8 454.0 220.0 14.0 Cheviolot USA 4354 1970-01-01
impala

85 8 440.0 215.0 14.0 plymouth fury iii USA 4312 1970-01-01

10.0 8 455.0 225.0 14.0 pontiac catalina USA 4425 1970-01-01
amc

85 8 390.0 190.0 15.0 USA 3850 1970-01-01

ambassador dpl





_static/images/table-style-before.png
Acceleration | Cylinders | Displacement | Horsepower | Miles_per_Gallon |Name Origin |Weight_in_Ibs |Year
0 |12.0 8 307.0 130.0 18.0 chevrolet chevelle malibu USA |3504 1970-01-01
1 [115 8 350.0 165.0 15.0 buick skylark 320 USA |3693 1970-01-01
2 |11.0 8 318.0 150.0 18.0 plymouth satellite USA |3436 1970-01-01
3 [12.0 8 304.0 150.0 16.0 amc rebel sst USA |3433 1970-01-01
4 (105 8 302.0 140.0 17.0 ford torino USA |3449 1970-01-01
5 |10.0 8 429.0 198.0 15.0 ford galaxie 500 USA |4341 1970-01-01
6 |9.0 8 454.0 220.0 14.0 chevrolet impala USA |4354 1970-01-01
7 |85 8 440.0 215.0 14.0 plymouth fury iii USA |4312 1970-01-01
8 [10.0 8 455.0 225.0 14.0 pontiac catalina USA |4425 1970-01-01
9 |85 8 390.0 190.0 15.0 amc ambassador dpl USA |3850 1970-01-01






_images/cell-toolbar-41.png
View Insert

Toggle Header
Toggle Toolbar
Cell Toolbar

Cell

Kernel Help

B C Code

None
Edit Metadata
Raw Cell Format

Slideshow

«





_images/command-palette-41.png
find Q

jupyter-notebook command group

find and replace (command)






_images/blank-notebook-ui.png
: Jupyter Untitled . <=-Notebook hame:dchanges)

Fle  Eat  vew et cal kemel Hep Menu bar
B+ % @& B 4 v HRm B C » come 1/ = Toolbar

™l Code cell






_images/cell-tags-toolbar.png
Add tag

In [4]: nbconvert-hide X | nbval-ignore-output %

import numpy as np
print(np._ version )

1.12.0
In [5]: Add tag
a = np.arange(l5).reshape(3, 5)
a
Out[5]: array([[ O, 1, 2, 3, 4],
[ 5 6, 7, 8, 91,
[io, 11, 12, 13, 141]11])
Add tag

In [6]:

a.shape

out[6]: (3, 5)





_images/dashboard-sort.png
: Ju pyter Logout

Files Running Clusters Nbextensions
Select items to perform actions on them. Upload New~ &
N ~ | @@ / Months Name ¥ Last Modified 4
O.. seconds ago
~) & March.ipynb Running 2 minutes ago
~) & February.ipynb Running 2 minutes ago

& January.ipynb Running 3 minutes ago





_images/find-replace-41.png
Find and Replace

Return

3 matches

Run a code cell using ~Shift-EnterReturn” or pressing the
* “Alt-EnterReturn” runs the current cell a...

* “Ctrl-EnterReturn” run the current cell an...

Replace All






_images/jupyter-file-editor.png
e0e [in] ® 0 6 localhost o & O
= Ju pyter my-awesome-blog-post.md v a few seconds ago
Fle Edt Vew Language Markdown

# This is an awesome blog post.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras suscipit, magna quis venenatis vehicula, lectus urna vehicula magna,
in vulputate velit magna vel turpis. Sed tristique feugiat felis, id interdum nisl. Nulla facilisi. Pellentesque mollis mi non
arcu pellentesque, quis fringilla tellus condimentum. Donec ultricies rutrum justo, eu malesuada dolor. Duis nibh neque, consequat
sit amet sem nec, ultficies congue metus. Integer aliquam urna vitae felis pharetra, ut efficitur metus egestas. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec purus sapien, euismod sit amet leo vel,
pretiun consequat augue. Nunc at mauris non magna luctus ullamcorper a ac leo. Maecenas molestie sem eget molestie porttitor. Duis
ultrices felis et dui rutrum, eget condimentum lorem elementum. Integer tristique bibendum ex, quis interdum mauris ultricies
quis. Nulla aliquam sed risus ac ullamcorper.

Integer fermentum, quam vitae luctus posuere, erat libero luctus diam, eu pellentesque velit sem quis nisl. Maecenas cursus lorem
vitae condimentum mollis. Mauris sed aliguet nisl. Fusce maximus at velit ac tristique. Suspendisse purus massa, pharetra a sapien
eget, pulvinar suscipit metus. Mauris pulvinar ipsum varius, consectetur elit at, interdum lectus. Cras pharetra enim lacus,
sagittis eleifend enim auctor non. Ut hendrerit nisi tristique felis blandit interdum.

Etiam suscipit sodales egestas. In bibendum placerat lorem, sit amet bibendum augue rutrum in. Vestibulum vulputate lorem dui,
quis tristique elit varius et. Nam imperdiet dui non neque convallis pharetra. Donec leo massa, faucibus id neque quis, posuere
lobortis enim. Quisque vel dui et tortor viverra ultrices. Praesent mattis euismod magna ut imperdiet. Nullam pretium suscipit
ligula, in mollis erat gravida vitae. Vivamus eget dui eros. Mauris sit amet nibh sed augue fermentum elementum ut vel urna.
Vestibulum aliquam condimentum auctor.

Nulla ac neque non arcu lacinia tristigue in at eros. Sed euismod enim ac arcu hendrerit, mattis tempus dui dapibus. Nunc
elementum lorem turpis, quis dignissim sem dapibus sed. Duis vitae est at ligula faucibus pretium. Ut ac suscipit libero. In
molestie diam ut nisl varius, at malesuada odio condimentum. Vestibulum placerat at sem a mattis.

Nullam laoreet iaculis magna ac iaculis. Curabitur gravida pulvinar nibh non blandit. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Vivamus ornare dui enim, non tincidunt nulla volutpat non. Aliquam scelerisque nisi
a orci tempor eleifend. Etiam placerat commodo nunc, lacinia ultrices eros faucibus ut. Fusce imperdiet purus velit, eget porta
nisi pretium ut. Sed varius est nec mi sagittis, eget maximus libero consequat. Mauris ac eros volutpat, finibus ligula et,
posuere justo.





nav.xhtml

    
      Table of Contents


      
        		
          The Jupyter Notebook
        


        		
          The Jupyter Notebook
          
            		
              Introduction
              
                		
                  Main features of the web application
                


                		
                  Notebook documents
                


                		
                  Notebooks and privacy
                


              


            


            		
              Starting the notebook server
              
                		
                  Creating a new notebook document
                


                		
                  Opening notebooks
                


              


            


            		
              Notebook user interface
            


            		
              Structure of a notebook document
              
                		
                  Code cells
                


                		
                  Markdown cells
                


                		
                  Raw cells
                


              


            


            		
              Basic workflow
              
                		
                  Keyboard shortcuts
                


              


            


            		
              Plotting
            


            		
              Installing kernels
            


            		
              Trusting Notebooks
            


            		
              Browser Compatibility
            


          


        


        		
          User interface components
          
            		
              Notebook Dashboard
            


            		
              Notebook Editor
            


            		
              Interactive User Interface Tour of the Notebook
              
                		
                  Edit Mode and Notebook Editor
                


              


            


            		
              File Editor
            


          


        


        		
          Notebook Examples
        


        		
          What to do when things go wrong
          
            		
              Jupyter fails to start
            


            		
              Jupyter doesn’t load or doesn’t work in the browser
            


            		
              Jupyter can’t start a kernel
            


            		
              Python Environments
            


            		
              Windows Systems
              
                		
                  pywin32 Issues
                


              


            


            		
              This Worked An Hour Ago
            


            		
              Asking for help
              
                		
                  Gathering Information
                


              


            


          


        


        		
          Changelog
          
            		
              6.4.4
              
                		
                  Documentation improvements
                


                		
                  Other merged PRs
                


                		
                  Contributors to this release
                


              


            


            		
              6.4.3
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              6.4.2
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              6.4.0
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Documentation improvements
                


                		
                  Contributors to this release
                


              


            


            		
              6.3.0
              
                		
                  Merged PRs
                


                		
                  Contributors to this release
                


              


            


            		
              6.2.0
            


            		
              Merged PRs
            


            		
              6.1.6
            


            		
              Merged PRs
            


            		
              6.1.5
            


            		
              6.1.4
            


            		
              6.1.3
            


            		
              6.1.2
            


            		
              6.1.1
            


            		
              6.1.0
            


            		
              6.0.3
            


            		
              6.0.2
            


            		
              6.0.1
            


            		
              6.0
            


            		
              5.7.8
            


            		
              5.7.6
            


            		
              5.7.5
            


            		
              5.7.4
            


            		
              5.7.3
            


            		
              5.7.2
            


            		
              5.7.1
            


            		
              5.7.0
            


            		
              5.6.0
            


            		
              5.5.0
            


            		
              5.4.1
            


            		
              5.4.0
            


            		
              5.3.1
            


            		
              5.3.0
            


            		
              5.2.1
            


            		
              5.2.0
            


            		
              5.1.0
            


            		
              5.0.0
              
                		
                  File sorting in the dashboard
                


                		
                  Cell tags
                


                		
                  Table style
                


                		
                  Customise keyboard shortcuts
                


                		
                  Other additions
                


              


            


            		
              4.4.0
            


            		
              4.3.2
            


            		
              4.3.1
            


            		
              4.3.0
            


            		
              4.2.3
            


            		
              4.2.2
            


            		
              4.2.1
            


            		
              4.2.0
            


            		
              4.1.0
            


            		
              4.0.x
              
                		
                  4.0.6
                


                		
                  4.0.5
                


                		
                  4.0.4
                


                		
                  4.0.2
                


                		
                  4.0.0
                


              


            


          


        


        		
          Comms
          
            		
              Opening a comm from the kernel
            


            		
              Opening a comm from the frontend
            


          


        


        		
          Configuration Overview
          
            		
              Jupyter’s Common Configuration system
            


            		
              Notebook server
            


            		
              Notebook front-end client
              
                		
                  Configuring the notebook frontend
                


              


            


            		
              Notebook extensions
            


          


        


        		
          Config file and command line options
          
            		
              Options
            


          


        


        		
          Running a notebook server
          
            		
              Securing a notebook server
              
                		
                  Prerequisite: A notebook configuration file
                


                		
                  Automatic Password setup
                


                		
                  Preparing a hashed password
                


                		
                  Adding hashed password to your notebook configuration file
                


                		
                  Using SSL for encrypted communication
                


              


            


            		
              Running a public notebook server
              
                		
                  Using Let’s Encrypt
                


                		
                  Firewall Setup
                


              


            


            		
              Running the notebook with a customized URL prefix
            


            		
              Embedding the notebook in another website
            


            		
              Using a gateway server for kernel management
            


            		
              Known issues
              
                		
                  Proxies
                


                		
                  Content-Security-Policy (CSP)
                


                		
                  Docker CMD
                


              


            


          


        


        		
          Security in the Jupyter notebook server
          
            		
              Alternatives to token authentication
            


          


        


        		
          Security in notebook documents
          
            		
              The problem
            


            		
              Our security model
            


            		
              The details of trust
              
                		
                  Updating trust
                


                		
                  Explicit trust
                


              


            


            		
              Reporting security issues
            


            		
              Affected use cases
              
                		
                  Javascript and CSS in Markdown cells
                


                		
                  Collaboration
                


              


            


          


        


        		
          Configuring the notebook frontend
          
            		
              How front end configuration works
            


            		
              Example - Changing the notebook’s default indentation
            


            		
              Example - Restoring the notebook’s default indentation
            


            		
              Persisting configuration settings
            


          


        


        		
          Extending the Notebook
          
            		
              Contents API
              
                		
                  Data Model
                


                		
                  Writing a Custom ContentsManager
                


                		
                  Customizing Checkpoints
                


                		
                  Testing
                


              


            


            		
              File save hooks
              
                		
                  Examples
                


              


            


            		
              Custom request handlers
              
                		
                  Writing a notebook server extension
                


                		
                  Registering custom handlers
                


              


            


            		
              Extra Parameters and authentication
            


            		
              Custom front-end extensions
              
                		
                  The structure of a front-end extension
                


                		
                  Modifying key bindings
                


                		
                  Defining and registering your own actions
                


                		
                  Installing and enabling extensions
                


                		
                  Kernel Specific extensions
                


              


            


            		
              Customize keymaps
            


            		
              Custom bundler extensions
              
                		
                  Declaring bundler metadata
                


                		
                  Writing the bundle function
                


                		
                  Enabling/disabling bundler extensions
                


                		
                  Example: IPython Notebook bundle (.zip)
                


                		
                  Bundler invocation details
                


              


            


          


        


        		
          Contributing to the Jupyter Notebook
          
            		
              General Guidelines
            


            		
              Setting Up a Development Environment
              
                		
                  Installing Node.js and npm
                


                		
                  Installing the Jupyter Notebook
                


                		
                  Verification
                


                		
                  Troubleshooting the Installation
                


                		
                  Rebuilding JavaScript and CSS
                


              


            


            		
              Running Tests
              
                		
                  Python Tests
                


                		
                  JavaScript Tests
                


              


            


            		
              Building the Documentation
            


          


        


        		
          Developer FAQ
        


      


    
  

_images/jupyter-notebook-edit.png
eoe [en] ® 0 e localhost ()
~
—Ju pyter Welcome to Python Last Checkpoint: Last Tuesday at 2:34 PM (autosaved) @
File  Edit View Inset Cell  Kemel Help # |Python3 O

B+ Edit Mode Indicator

@ B 4 ¥ MW W C | Markdown 4 Cell Toolbar: | None

<div class="clearfix" style="padding: 10px; padding-left: Opx'>
https://raw.githubusercontent.com/jupyter/nature-demo/master/images/jupyter-logo.png" widt!
display: inline-block; margin-top: 5px;'>

<a href="nttp://bit.ly/tmpnbdevrax’><img src="https://cloud.githubusercontent.con/assets/836375/4916141/2732892e-64d6-
11e4-980f-11afcfo3ca3l.png" width="150px" class="pull-right" style="display: inline-block; margin: Opx;'></a>

</div>

150px"

## Welcome to the Temporary Notebook (tmpnb) service!

This Notebook Server was **launched just for yout+. It's a temporary way for you to try out a recent development
version of the IPython/Jupyter notebook.

<div class="alert alert-warning" role="alert' styl
<p>**WARNINGH*</p>

“margin: 10px">

<p>Don't rely on this server for anything you want to last - your server will be *deleted after 10 minutes of
inactivity*.</p>
</div>

Your server is hosted thanks to [Rackspace](http://bit.ly/tmpnbdevrax), on their on-demand bare metal servers,
OonMetal] (http://bit.ly/onmetal).

Cell In Edit Mode
Run some Python code!

To run the code below:

1. Glick on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button (B ) in the toolbar above.

A fodl vl for 1 ainn Hha nedahank tarfars in auaiiahia harm






_images/multi-select-41.png
In [

In [

1|8

1|8

Code cells allow you to enter and run code

Run a code cell using shift-Enter or pressing the M button in the toolbar above:
a =10

print(a)

There are two other keyboard shortcuts for running code:

« Alt-Enter runs the current cell and inserts a new one below.
e Ctrl-Enter run the current cell and enters command mode.





_images/jupyter-notebook-dashboard.png
e0e < [x] ® 0 e localhost 3 o)t a

= Jupyter

Fies = Running  Clusters

‘Select items to perform actions on them. Upload  New~ £
0 - . File Tree
) [ data
O [ dev

O & Exploratory Data Analytics.ipynb

O & Lights Outipynb

& Welcome to Pythonipynb  Running Notebook Running





_images/jupyter-notebook-default.png
ece o ©.0 ojnle
ZJupyter welcome to Python wnsaved changes) a

Fle  Edit View Inset Cel  Kemel Help Menubar | Python3 O

+ 3 @ B A ¥ | M W C| Makdown 4| | @ || Celoolbar | Toolbar Cell Mode Indicator | Kernel Indicator

ZJupyter @rackspace

Welcome to the Temporary Notebook (tmpnb) service!
This Notebook Server was launched just for you. It's a temporary way for you to try out a recent development version of the IPython/Jupyter notebook.

WARNING
Don't rely on this server for anything you want to last - your server will be deleted after 10 minutes of inactivity.

Your server is hosted thanks to Rackspace, on their on-demand bare metal servers, OnVietal.

Cell In Command Mode
Run some Python code!

To run the code below:

1. Glick on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button (B ) in the toolbar above.

Afull tutorial for using the notebook interface is available here.

In [ ]: tmatplotlib inline

import pandas as pd

import numpy as np
et bl et] ik





_images/table-style-after.png
Acceleration Cylinders Displacement Horsepower Miles_per_Gallon Name Origin  Weight_in_lbs Year

12.0 8 307.0 130.0 18.0 chevjolot USA 3504 1970-01-01
chevelle malibu

1.5 8 350.0 165.0 150  Duick Sky';‘zrg USA 3693 1970-01-01

1.0 8 318.0 150.0 18.0 plymout USA 3436 1970-01-01
satellite

12.0 8 304.0 150.0 16.0  amc rebel sst USA 3433 1970-01-01

105 8 302.0 140.0 17.0 ford torino USA 3449 1970-01-01

10.0 8 429.0 198.0 15.0 ford galaxie 500 USA 4341 1970-01-01

9.0 8 454.0 220.0 14.0 Cheviolot USA 4354 1970-01-01
impala

85 8 440.0 215.0 14.0 plymouth fury iii USA 4312 1970-01-01

10.0 8 455.0 225.0 14.0 pontiac catalina USA 4425 1970-01-01
amc

85 8 390.0 190.0 15.0 USA 3850 1970-01-01

ambassador dpl





_images/table-style-before.png
Acceleration | Cylinders | Displacement | Horsepower | Miles_per_Gallon |Name Origin |Weight_in_Ibs |Year
0 |12.0 8 307.0 130.0 18.0 chevrolet chevelle malibu USA |3504 1970-01-01
1 [115 8 350.0 165.0 15.0 buick skylark 320 USA |3693 1970-01-01
2 |11.0 8 318.0 150.0 18.0 plymouth satellite USA |3436 1970-01-01
3 [12.0 8 304.0 150.0 16.0 amc rebel sst USA |3433 1970-01-01
4 (105 8 302.0 140.0 17.0 ford torino USA |3449 1970-01-01
5 |10.0 8 429.0 198.0 15.0 ford galaxie 500 USA |4341 1970-01-01
6 |9.0 8 454.0 220.0 14.0 chevrolet impala USA |4354 1970-01-01
7 |85 8 440.0 215.0 14.0 plymouth fury iii USA |4312 1970-01-01
8 [10.0 8 455.0 225.0 14.0 pontiac catalina USA |4425 1970-01-01
9 |85 8 390.0 190.0 15.0 amc ambassador dpl USA |3850 1970-01-01






_images/new-notebook.gif
Z Jupyter

Files | Running  Clusters

Select items to perform actions on them.

0[]
03 basic

3 citations

3 custom_fiter

3 custom_latex_cell_style
3 custom_preprocessor
3 custom_template

3 hr_cell_style

3 images

3 latex_cell_style

3 notebook_cell_style

P

Upload || New +
3





_images/shortcut-editor.png
Edit Command mode Shortcuts

Here you can modify the keyboard shortcuts available in command mode. Your changes will be stored for

later sessions. See more details of defining keyboard shortcuts below.

toggle rtl layout add shortcut +
edit command mode keyboard shortcuts add shortcut +
shutdown kernel add shortcut +
confirm shutdown kernel add shortcut +
restart kernel add shortcut +
confirm restart kernel 0,0 x |add shortcut +
restart kernel and run all cells add shortcut +
confirm restart kernel and run all cells add shortcut +
restart kernel and clear output add shortcut +
confirm restart kernel and clear output add shortcut +
interrupt kernel I,I % |add shortcut +






_static/file.png





_static/images/blank-notebook-ui.png
: Jupyter Untitled . <=-Notebook hame:dchanges)

Fle  Eat  vew et cal kemel Hep Menu bar
B+ % @& B 4 v HRm B C » come 1/ = Toolbar

™l Code cell






_static/minus.png





_static/plus.png





_static/images/cell-toolbar-41.png
View Insert

Toggle Header
Toggle Toolbar
Cell Toolbar

Cell

Kernel Help

B C Code

None
Edit Metadata
Raw Cell Format

Slideshow

«





_static/images/command-palette-41.png
find Q

jupyter-notebook command group

find and replace (command)






_static/images/cell-tags-toolbar.png
Add tag

In [4]: nbconvert-hide X | nbval-ignore-output %

import numpy as np
print(np._ version )

1.12.0
In [5]: Add tag
a = np.arange(l5).reshape(3, 5)
a
Out[5]: array([[ O, 1, 2, 3, 4],
[ 5 6, 7, 8, 91,
[io, 11, 12, 13, 141]11])
Add tag

In [6]:

a.shape

out[6]: (3, 5)





_static/images/find-replace-41.png
Find and Replace

Return

3 matches

Run a code cell using ~Shift-EnterReturn” or pressing the
* “Alt-EnterReturn” runs the current cell a...

* “Ctrl-EnterReturn” run the current cell an...

Replace All






_static/images/jupyter-file-editor.png
e0e [in] ® 0 6 localhost o & O
= Ju pyter my-awesome-blog-post.md v a few seconds ago
Fle Edt Vew Language Markdown

# This is an awesome blog post.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras suscipit, magna quis venenatis vehicula, lectus urna vehicula magna,
in vulputate velit magna vel turpis. Sed tristique feugiat felis, id interdum nisl. Nulla facilisi. Pellentesque mollis mi non
arcu pellentesque, quis fringilla tellus condimentum. Donec ultricies rutrum justo, eu malesuada dolor. Duis nibh neque, consequat
sit amet sem nec, ultficies congue metus. Integer aliquam urna vitae felis pharetra, ut efficitur metus egestas. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec purus sapien, euismod sit amet leo vel,
pretiun consequat augue. Nunc at mauris non magna luctus ullamcorper a ac leo. Maecenas molestie sem eget molestie porttitor. Duis
ultrices felis et dui rutrum, eget condimentum lorem elementum. Integer tristique bibendum ex, quis interdum mauris ultricies
quis. Nulla aliquam sed risus ac ullamcorper.

Integer fermentum, quam vitae luctus posuere, erat libero luctus diam, eu pellentesque velit sem quis nisl. Maecenas cursus lorem
vitae condimentum mollis. Mauris sed aliguet nisl. Fusce maximus at velit ac tristique. Suspendisse purus massa, pharetra a sapien
eget, pulvinar suscipit metus. Mauris pulvinar ipsum varius, consectetur elit at, interdum lectus. Cras pharetra enim lacus,
sagittis eleifend enim auctor non. Ut hendrerit nisi tristique felis blandit interdum.

Etiam suscipit sodales egestas. In bibendum placerat lorem, sit amet bibendum augue rutrum in. Vestibulum vulputate lorem dui,
quis tristique elit varius et. Nam imperdiet dui non neque convallis pharetra. Donec leo massa, faucibus id neque quis, posuere
lobortis enim. Quisque vel dui et tortor viverra ultrices. Praesent mattis euismod magna ut imperdiet. Nullam pretium suscipit
ligula, in mollis erat gravida vitae. Vivamus eget dui eros. Mauris sit amet nibh sed augue fermentum elementum ut vel urna.
Vestibulum aliquam condimentum auctor.

Nulla ac neque non arcu lacinia tristigue in at eros. Sed euismod enim ac arcu hendrerit, mattis tempus dui dapibus. Nunc
elementum lorem turpis, quis dignissim sem dapibus sed. Duis vitae est at ligula faucibus pretium. Ut ac suscipit libero. In
molestie diam ut nisl varius, at malesuada odio condimentum. Vestibulum placerat at sem a mattis.

Nullam laoreet iaculis magna ac iaculis. Curabitur gravida pulvinar nibh non blandit. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Vivamus ornare dui enim, non tincidunt nulla volutpat non. Aliquam scelerisque nisi
a orci tempor eleifend. Etiam placerat commodo nunc, lacinia ultrices eros faucibus ut. Fusce imperdiet purus velit, eget porta
nisi pretium ut. Sed varius est nec mi sagittis, eget maximus libero consequat. Mauris ac eros volutpat, finibus ligula et,
posuere justo.





_static/images/dashboard-sort.png
: Ju pyter Logout

Files Running Clusters Nbextensions
Select items to perform actions on them. Upload New~ &
N ~ | @@ / Months Name ¥ Last Modified 4
O.. seconds ago
~) & March.ipynb Running 2 minutes ago
~) & February.ipynb Running 2 minutes ago

& January.ipynb Running 3 minutes ago





_static/images/jupyter-notebook-edit.png
eoe [en] ® 0 e localhost ()
~
—Ju pyter Welcome to Python Last Checkpoint: Last Tuesday at 2:34 PM (autosaved) @
File  Edit View Inset Cell  Kemel Help # |Python3 O

B+ Edit Mode Indicator

@ B 4 ¥ MW W C | Markdown 4 Cell Toolbar: | None

<div class="clearfix" style="padding: 10px; padding-left: Opx'>
https://raw.githubusercontent.com/jupyter/nature-demo/master/images/jupyter-logo.png" widt!
display: inline-block; margin-top: 5px;'>

<a href="nttp://bit.ly/tmpnbdevrax’><img src="https://cloud.githubusercontent.con/assets/836375/4916141/2732892e-64d6-
11e4-980f-11afcfo3ca3l.png" width="150px" class="pull-right" style="display: inline-block; margin: Opx;'></a>

</div>

150px"

## Welcome to the Temporary Notebook (tmpnb) service!

This Notebook Server was **launched just for yout+. It's a temporary way for you to try out a recent development
version of the IPython/Jupyter notebook.

<div class="alert alert-warning" role="alert' styl
<p>**WARNINGH*</p>

“margin: 10px">

<p>Don't rely on this server for anything you want to last - your server will be *deleted after 10 minutes of
inactivity*.</p>
</div>

Your server is hosted thanks to [Rackspace](http://bit.ly/tmpnbdevrax), on their on-demand bare metal servers,
OonMetal] (http://bit.ly/onmetal).

Cell In Edit Mode
Run some Python code!

To run the code below:

1. Glick on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button (B ) in the toolbar above.

A fodl vl for 1 ainn Hha nedahank tarfars in auaiiahia harm






_static/images/jupyter-verification.png
About Jupyter Notebook

Server Information:
You are using Jupyter notebook

The version of the notebook server is: 5.5.0.dev0-4c36becat
The server is running on this version of Python:





_static/images/jupyter-notebook-dashboard.png
e0e < [x] ® 0 e localhost 3 o)t a

= Jupyter

Fies = Running  Clusters

‘Select items to perform actions on them. Upload  New~ £
0 - . File Tree
) [ data
O [ dev

O & Exploratory Data Analytics.ipynb

O & Lights Outipynb

& Welcome to Pythonipynb  Running Notebook Running





_static/images/jupyter-notebook-default.png
ece o ©.0 ojnle
ZJupyter welcome to Python wnsaved changes) a

Fle  Edit View Inset Cel  Kemel Help Menubar | Python3 O

+ 3 @ B A ¥ | M W C| Makdown 4| | @ || Celoolbar | Toolbar Cell Mode Indicator | Kernel Indicator

ZJupyter @rackspace

Welcome to the Temporary Notebook (tmpnb) service!
This Notebook Server was launched just for you. It's a temporary way for you to try out a recent development version of the IPython/Jupyter notebook.

WARNING
Don't rely on this server for anything you want to last - your server will be deleted after 10 minutes of inactivity.

Your server is hosted thanks to Rackspace, on their on-demand bare metal servers, OnVietal.

Cell In Command Mode
Run some Python code!

To run the code below:

1. Glick on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button (B ) in the toolbar above.

Afull tutorial for using the notebook interface is available here.

In [ ]: tmatplotlib inline

import pandas as pd

import numpy as np
et bl et] ik





_static/images/shortcut-editor.png
Edit Command mode Shortcuts

Here you can modify the keyboard shortcuts available in command mode. Your changes will be stored for

later sessions. See more details of defining keyboard shortcuts below.

toggle rtl layout add shortcut +
edit command mode keyboard shortcuts add shortcut +
shutdown kernel add shortcut +
confirm shutdown kernel add shortcut +
restart kernel add shortcut +
confirm restart kernel 0,0 x |add shortcut +
restart kernel and run all cells add shortcut +
confirm restart kernel and run all cells add shortcut +
restart kernel and clear output add shortcut +
confirm restart kernel and clear output add shortcut +
interrupt kernel I,I % |add shortcut +






_static/images/multi-select-41.png
In [

In [

1|8

1|8

Code cells allow you to enter and run code

Run a code cell using shift-Enter or pressing the M button in the toolbar above:
a =10

print(a)

There are two other keyboard shortcuts for running code:

« Alt-Enter runs the current cell and inserts a new one below.
e Ctrl-Enter run the current cell and enters command mode.





_static/images/new-notebook.gif
Z Jupyter

Files | Running  Clusters

Select items to perform actions on them.

0[]
03 basic

3 citations

3 custom_fiter

3 custom_latex_cell_style
3 custom_preprocessor
3 custom_template

3 hr_cell_style

3 images

3 latex_cell_style

3 notebook_cell_style

P

Upload || New +
3





